Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Physical Sciences Directorate
(128)
- User Facilities (27)
- (-) Neutron Sciences Directorate (11)
Researcher
- Chris Tyler
- Justin West
- Peeyush Nandwana
- Ritin Mathews
- Brian Post
- Amit Shyam
- Andrzej Nycz
- Blane Fillingim
- Chris Masuo
- David Olvera Trejo
- J.R. R Matheson
- Jaydeep Karandikar
- Lauren Heinrich
- Luke Meyer
- Peter Wang
- Rangasayee Kannan
- Scott Smith
- Sudarsanam Babu
- Thomas Feldhausen
- William Carter
- Yousub Lee
- Akash Jag Prasad
- Alexander I Kolesnikov
- Alexei P Sokolov
- Alex Plotkowski
- Alex Walters
- Andres Marquez Rossy
- Bekki Mills
- Brian Gibson
- Bruce A Pint
- Bruce Hannan
- Bryan Lim
- Calen Kimmell
- Christopher Fancher
- Dave Willis
- Emma Betters
- Gordon Robertson
- Greg Corson
- Jay Reynolds
- Jeff Brookins
- Jesse Heineman
- John Potter
- John Wenzel
- Josh B Harbin
- Joshua Vaughan
- Keju An
- Loren L Funk
- Luke Chapman
- Mark Loguillo
- Matthew B Stone
- Polad Shikhaliev
- Ryan Dehoff
- Shannon M Mahurin
- Steven J Zinkle
- Sydney Murray III
- Tao Hong
- Theodore Visscher
- Tim Graening Seibert
- Tomas Grejtak
- Tomonori Saito
- Tony L Schmitz
- Vasilis Tzoganis
- Vasiliy Morozov
- Victor Fanelli
- Vladimir Orlyanchik
- Vladislav N Sedov
- Weicheng Zhong
- Wei Tang
- Xiang Chen
- Yacouba Diawara
- Yanli Wang
- Ying Yang
- Yiyu Wang
- Yun Liu
- Yutai Kato

We presented a novel apparatus and method for laser beam position detection and pointing stabilization using analog position-sensitive diodes (PSDs).

System and method for part porosity monitoring of additively manufactured components using machining
In additive manufacturing, choice of process parameters for a given material and geometry can result in porosities in the build volume, which can result in scrap.

The lack of real-time insights into how materials evolve during laser powder bed fusion has limited the adoption by inhibiting part qualification. The developed approach provides key data needed to fabricate born qualified parts.

ORNL has developed a large area thermal neutron detector based on 6LiF/ZnS(Ag) scintillator coupled with wavelength shifting fibers. The detector uses resistive charge divider-based position encoding.

Distortion generated during additive manufacturing of metallic components affect the build as well as the baseplate geometries. These distortions are significant enough to disqualify components for functional purposes.

A new nanostructured bainitic steel with accelerated kinetics for bainite formation at 200 C was designed using a coupled CALPHAD, machine learning, and data mining approach.

For additive manufacturing of large-scale parts, significant distortion can result from residual stresses during deposition and cooling. This can result in part scraps if the final part geometry is not contained in the additively manufactured preform.

Neutron scattering experiments cover a large temperature range in which experimenters want to test their samples.

In additive manufacturing large stresses are induced in the build plate and part interface. A result of these stresses are deformations in the build plate and final component.