Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (128)
- User Facilities (27)
Researcher
- Andrzej Nycz
- Chris Masuo
- Rama K Vasudevan
- Peter Wang
- Sergei V Kalinin
- Yongtao Liu
- Alex Walters
- Kevin M Roccapriore
- Kyle Kelley
- Maxim A Ziatdinov
- Olga S Ovchinnikova
- Brian Gibson
- Joshua Vaughan
- Kashif Nawaz
- Luke Meyer
- Stephen Jesse
- Udaya C Kalluri
- William Carter
- Akash Jag Prasad
- Amit Shyam
- An-Ping Li
- Andrew Lupini
- Anton Ievlev
- Arpan Biswas
- Bogdan Dryzhakov
- Brian Fricke
- Calen Kimmell
- Chelo Chavez
- Christopher Fancher
- Christopher Rouleau
- Chris Tyler
- Clay Leach
- Costas Tsouris
- Debangshu Mukherjee
- Gerd Duscher
- Gordon Robertson
- Gs Jung
- Gyoung Gug Jang
- Hoyeon Jeon
- Huixin (anna) Jiang
- Ilia N Ivanov
- Ivan Vlassiouk
- J.R. R Matheson
- Jamieson Brechtl
- Jaydeep Karandikar
- Jay Reynolds
- Jeff Brookins
- Jesse Heineman
- Jewook Park
- John Potter
- Jong K Keum
- Kai Li
- Kyle Gluesenkamp
- Liam Collins
- Mahshid Ahmadi-Kalinina
- Marti Checa Nualart
- Md Inzamam Ul Haque
- Mina Yoon
- Neus Domingo Marimon
- Nickolay Lavrik
- Ondrej Dyck
- Radu Custelcean
- Riley Wallace
- Ritin Mathews
- Saban Hus
- Sai Mani Prudhvi Valleti
- Steven Randolph
- Sumner Harris
- Utkarsh Pratiush
- Vincent Paquit
- Vladimir Orlyanchik
- Xiaohan Yang
- Zhiming Gao

A human-in-the-loop machine learning (hML) technology potentially enhances experimental workflows by integrating human expertise with AI automation.

This technology is a laser-based heating unit that offers rapid heating profiles on a research scale with minimal incidental heating of materials processing environments.

The scanning transmission electron microscope (STEM) provides unprecedented spatial resolution and is critical for many applications, primarily for imaging matter at the atomic and nanoscales and obtaining spectroscopic information at similar length scales.

In additive printing that utilizes multiple robotic agents to build, each agent, or “arm”, is currently limited to a prescribed path determined by the user.

This invention discusses the methodology to calibrating a multi-robot system with an arbitrary number of agents to obtain single coordinate frame with high accuracy.

Gas metal arc welding (GMAW) wire arc additive manufacturing (WAAM) processes use inert shielding to protect the weld arc during material deposition, but do not protect the trailing bead, which can lead to weld issues varying from low finish quality to diminished material prop

Moisture management accounts for over 40% of the energy used by buildings. As such development of energy efficient and resilient dehumidification technologies are critical to decarbonize the building energy sector.

A novel molecular sorbent system for low energy CO2 regeneration is developed by employing CO2-responsive molecules and salt in aqueous media where a precipitating CO2--salt fractal network is formed, resulting in solid-phase formation and sedimentation.

This technology provides a device, platform and method of fabrication of new atomically tailored materials. This “synthescope” is a scanning transmission electron microscope (STEM) transformed into an atomic-scale material manipulation platform.