Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (29)
- Computing and Computational Sciences Directorate (39)
- Energy Science and Technology Directorate
(229)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (138)
- User Facilities (28)
Researcher
- Rama K Vasudevan
- Rafal Wojda
- Sergei V Kalinin
- Yongtao Liu
- Kevin M Roccapriore
- Kyle Kelley
- Maxim A Ziatdinov
- Olga S Ovchinnikova
- Prasad Kandula
- Kashif Nawaz
- Stephen Jesse
- Vandana Rallabandi
- Alex Plotkowski
- An-Ping Li
- Andrew Lupini
- Anton Ievlev
- Arpan Biswas
- Benjamin Lawrie
- Bogdan Dryzhakov
- Brian Fricke
- Chengyun Hua
- Christopher Fancher
- Christopher Rouleau
- Costas Tsouris
- Debangshu Mukherjee
- Gabor Halasz
- Gerd Duscher
- Gs Jung
- Gyoung Gug Jang
- Hoyeon Jeon
- Huixin (anna) Jiang
- Ilia N Ivanov
- Ivan Vlassiouk
- Jamieson Brechtl
- Jewook Park
- Jiaqiang Yan
- Jong K Keum
- Kai Li
- Kyle Gluesenkamp
- Liam Collins
- Mahshid Ahmadi-Kalinina
- Marcio Magri Kimpara
- Marti Checa Nualart
- Md Inzamam Ul Haque
- Mina Yoon
- Mostak Mohammad
- Neus Domingo Marimon
- Nickolay Lavrik
- Omer Onar
- Ondrej Dyck
- Petro Maksymovych
- Praveen Kumar
- Radu Custelcean
- Saban Hus
- Sai Mani Prudhvi Valleti
- Shajjad Chowdhury
- Steven Randolph
- Subho Mukherjee
- Suman Debnath
- Sumner Harris
- Utkarsh Pratiush
- Zhiming Gao

This technology is a laser-based heating unit that offers rapid heating profiles on a research scale with minimal incidental heating of materials processing environments.

When a magnetic field is applied to a type-II superconductor, it penetrates the superconductor in a thin cylindrical line known as a vortex line. Traditional methods to manipulate these vortices are limited in precision and affect a broad area.

The scanning transmission electron microscope (STEM) provides unprecedented spatial resolution and is critical for many applications, primarily for imaging matter at the atomic and nanoscales and obtaining spectroscopic information at similar length scales.

Moisture management accounts for over 40% of the energy used by buildings. As such development of energy efficient and resilient dehumidification technologies are critical to decarbonize the building energy sector.

Additively manufacturing of the windings with a conductor distributed in the cross-section according to the Hilbert curve provides many benefits as it allows for the reduction of the high-frequency losses due to the reduction of the effective winding conductor size.

A novel molecular sorbent system for low energy CO2 regeneration is developed by employing CO2-responsive molecules and salt in aqueous media where a precipitating CO2--salt fractal network is formed, resulting in solid-phase formation and sedimentation.

This technology provides a device, platform and method of fabrication of new atomically tailored materials. This “synthescope” is a scanning transmission electron microscope (STEM) transformed into an atomic-scale material manipulation platform.

In scientific research and industrial applications, selecting the most accurate model to describe a relationship between input parameters and target characteristics of experiments is crucial.