Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (128)
- User Facilities (27)
Researcher
- Rama K Vasudevan
- Sergei V Kalinin
- Yongtao Liu
- Kevin M Roccapriore
- Kyle Kelley
- Maxim A Ziatdinov
- Olga S Ovchinnikova
- William Carter
- Alex Roschli
- Andrzej Nycz
- Brian Post
- Chris Masuo
- Kashif Nawaz
- Luke Meyer
- Stephen Jesse
- Adam Stevens
- Alex Walters
- Amy Elliott
- An-Ping Li
- Andrew Lupini
- Anton Ievlev
- Arpan Biswas
- Bogdan Dryzhakov
- Brian Fricke
- Cameron Adkins
- Christopher Rouleau
- Costas Tsouris
- Debangshu Mukherjee
- Erin Webb
- Evin Carter
- Gerd Duscher
- Gs Jung
- Gyoung Gug Jang
- Hoyeon Jeon
- Huixin (anna) Jiang
- Ilia N Ivanov
- Isha Bhandari
- Ivan Vlassiouk
- Jamieson Brechtl
- Jeremy Malmstead
- Jewook Park
- Jong K Keum
- Joshua Vaughan
- Kai Li
- Kitty K Mccracken
- Kyle Gluesenkamp
- Liam Collins
- Liam White
- Mahshid Ahmadi-Kalinina
- Marti Checa Nualart
- Md Inzamam Ul Haque
- Michael Borish
- Mina Yoon
- Neus Domingo Marimon
- Nickolay Lavrik
- Oluwafemi Oyedeji
- Ondrej Dyck
- Peter Wang
- Radu Custelcean
- Rangasayee Kannan
- Roger G Miller
- Ryan Dehoff
- Saban Hus
- Sai Mani Prudhvi Valleti
- Sarah Graham
- Soydan Ozcan
- Steven Randolph
- Sudarsanam Babu
- Sumner Harris
- Tyler Smith
- Utkarsh Pratiush
- William Peter
- Xianhui Zhao
- Yukinori Yamamoto
- Zhiming Gao

Moisture management accounts for over 40% of the energy used by buildings. As such development of energy efficient and resilient dehumidification technologies are critical to decarbonize the building energy sector.

A novel molecular sorbent system for low energy CO2 regeneration is developed by employing CO2-responsive molecules and salt in aqueous media where a precipitating CO2--salt fractal network is formed, resulting in solid-phase formation and sedimentation.

This technology provides a device, platform and method of fabrication of new atomically tailored materials. This “synthescope” is a scanning transmission electron microscope (STEM) transformed into an atomic-scale material manipulation platform.

In scientific research and industrial applications, selecting the most accurate model to describe a relationship between input parameters and target characteristics of experiments is crucial.