Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (29)
- Computing and Computational Sciences Directorate (39)
- Energy Science and Technology Directorate (229)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (138)
- User Facilities (28)
Researcher
- Ahmed Hassen
- Vlastimil Kunc
- Steve Bullock
- Soydan Ozcan
- Steven Guzorek
- Corson Cramer
- Vipin Kumar
- Halil Tekinalp
- Meghan Lamm
- Rama K Vasudevan
- Brian Post
- David Nuttall
- Sergei V Kalinin
- Uday Vaidya
- Umesh N MARATHE
- Yongtao Liu
- Beth L Armstrong
- Dan Coughlin
- Greg Larsen
- James Klett
- Joseph Chapman
- Katie Copenhaver
- Kevin M Roccapriore
- Kyle Kelley
- Maxim A Ziatdinov
- Nadim Hmeidat
- Nicholas Peters
- Olga S Ovchinnikova
- Trevor Aguirre
- Tyler Smith
- Alex Roschli
- Brittany Rodriguez
- Craig Blue
- Georges Chahine
- Hsuan-Hao Lu
- Jim Tobin
- John Lindahl
- Joseph Lukens
- Kashif Nawaz
- Matt Korey
- Muneer Alshowkan
- Pum Kim
- Sanjita Wasti
- Segun Isaac Talabi
- Stephen Jesse
- Subhabrata Saha
- Xianhui Zhao
- Adam Stevens
- Adwoa Owusu
- Akash Phadatare
- Amber Hubbard
- An-Ping Li
- Andrew Lupini
- Anees Alnajjar
- Anton Ievlev
- Arpan Biswas
- Benjamin Lawrie
- Ben Lamm
- Bogdan Dryzhakov
- Brian Fricke
- Brian Williams
- Cait Clarkson
- Charlie Cook
- Chengyun Hua
- Christopher Hershey
- Christopher Ledford
- Christopher Rouleau
- Costas Tsouris
- Daniel Rasmussen
- David J Mitchell
- Debangshu Mukherjee
- Dustin Gilmer
- Erin Webb
- Evin Carter
- Gabor Halasz
- Gabriel Veith
- Gerd Duscher
- Gs Jung
- Gyoung Gug Jang
- Hoyeon Jeon
- Huixin (anna) Jiang
- Ilia N Ivanov
- Ivan Vlassiouk
- Jamieson Brechtl
- Jeremy Malmstead
- Jesse Heineman
- Jewook Park
- Jiaqiang Yan
- Jong K Keum
- Jordan Wright
- Josh Crabtree
- Julian Charron
- Kai Li
- Khryslyn G Araño
- Kim Sitzlar
- Kitty K Mccracken
- Komal Chawla
- Kyle Gluesenkamp
- Liam Collins
- Mahshid Ahmadi-Kalinina
- Mariam Kiran
- Marm Dixit
- Marti Checa Nualart
- Md Inzamam Ul Haque
- Merlin Theodore
- Michael Kirka
- Mina Yoon
- Neus Domingo Marimon
- Nickolay Lavrik
- Oluwafemi Oyedeji
- Ondrej Dyck
- Paritosh Mhatre
- Petro Maksymovych
- Radu Custelcean
- Ryan Ogle
- Saban Hus
- Sai Mani Prudhvi Valleti
- Sana Elyas
- Shajjad Chowdhury
- Steven Randolph
- Sudarsanam Babu
- Sumner Harris
- Thomas Feldhausen
- Tolga Aytug
- Tomonori Saito
- Tony Beard
- Utkarsh Pratiush
- Zhiming Gao

The technology will offer supportless DIW of complex structures using vinyl ester resin, facilitated by multidirectional 6 axis printing.

We have developed a novel extrusion-based 3D printing technique that can achieve a resolution of 0.51 mm layer thickness, and catalyst loading of 44% and 90.5% before and after drying, respectively.

Dual-GP addresses limitations in traditional GPBO-driven autonomous experimentation by incorporating an additional surrogate observer and allowing human oversight, this technique improves optimization efficiency via data quality assessment and adaptability to unanticipated exp

Here we present a solution for practically demonstrating path-aware routing and visualizing a self-driving network.

Technologies directed to polarization agnostic continuous variable quantum key distribution are described.
Contact:
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

The development of quantum networking requires architectures capable of dynamically reconfigurable entanglement distribution to meet diverse user needs and ensure tolerance against transmission disruptions.

The technologies provide additively manufactured thermal protection system.

Wind turbine blades face a harsh environment in which erosion of the leading edge is a major factor for in-use maintenance. Current industrial practices to address this leading edge erosion are replacement of reinforcing materials upon significant damage infliction.

This manufacturing method uses multifunctional materials distributed volumetrically to generate a stiffness-based architecture, where continuous surfaces can be created from flat, rapidly produced geometries.

Through utilizing a two function splice we can increase the splice strength for opposing tows.
Contact:
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.