Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (29)
- Computing and Computational Sciences Directorate (39)
- Energy Science and Technology Directorate (229)
- Fusion and Fission Energy and Science Directorate
(24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (138)
- User Facilities (28)
Researcher
- Rama K Vasudevan
- Sergei V Kalinin
- Yongtao Liu
- Kevin M Roccapriore
- Kyle Kelley
- Maxim A Ziatdinov
- Olga S Ovchinnikova
- Kashif Nawaz
- Stephen Jesse
- An-Ping Li
- Andrew Lupini
- Anton Ievlev
- Arpan Biswas
- Benjamin Lawrie
- Bogdan Dryzhakov
- Brian Fricke
- Chengyun Hua
- Christopher Rouleau
- Costas Tsouris
- Debangshu Mukherjee
- Gabor Halasz
- Gerd Duscher
- Gs Jung
- Gyoung Gug Jang
- Hoyeon Jeon
- Huixin (anna) Jiang
- Ilia N Ivanov
- Ivan Vlassiouk
- Jamieson Brechtl
- Jewook Park
- Jiaqiang Yan
- Jong K Keum
- Kai Li
- Kyle Gluesenkamp
- Liam Collins
- Mahshid Ahmadi-Kalinina
- Marti Checa Nualart
- Md Inzamam Ul Haque
- Mina Yoon
- Neus Domingo Marimon
- Nickolay Lavrik
- Nithin Panicker
- Ondrej Dyck
- Petro Maksymovych
- Prashant Jain
- Radu Custelcean
- Saban Hus
- Sai Mani Prudhvi Valleti
- Steven Randolph
- Sumner Harris
- Utkarsh Pratiush
- Vittorio Badalassi
- Zhiming Gao
21 - 23 of 23 Results

This technology introduces an advanced machine learning approach for enhancing chemical imaging by correlating data from two mass spectrometry imaging (MSI) techniques.

The vast majority of energy conversion technologies and industrial processes depend on heat exchangers for transferring heat between fluids.
Aromas play a significant role in the quality and safety of food, beverages, and even manufactured products. The ability to detect and interpret these aromas accurately can enhance product safety and consumer satisfaction.