Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate
(217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities (27)
Researcher
- Singanallur Venkatakrishnan
- Amir K Ziabari
- Andrzej Nycz
- Chris Masuo
- Luke Meyer
- Philip Bingham
- Rob Moore II
- Ryan Dehoff
- Vincent Paquit
- William Carter
- Alex Walters
- Bruce Hannan
- Diana E Hun
- Gina Accawi
- Gurneesh Jatana
- Joshua Vaughan
- Loren L Funk
- Mark M Root
- Matthew Brahlek
- Michael Kirka
- Obaid Rahman
- Peter Wang
- Philip Boudreaux
- Polad Shikhaliev
- Theodore Visscher
- Vladislav N Sedov
- Yacouba Diawara

ORNL researchers have developed a deep learning-based approach to rapidly perform high-quality reconstructions from sparse X-ray computed tomography measurements.

We have been working to adapt background oriented schlieren (BOS) imaging to directly visualize building leakage, which is fast and easy.

ORNL has developed a large area thermal neutron detector based on 6LiF/ZnS(Ag) scintillator coupled with wavelength shifting fibers. The detector uses resistive charge divider-based position encoding.

Molecular Beam Epitaxy is a traditional technique for the synthesis of thin film materials used in the semiconducting and microelectronics industry. In its essence, the MBE technique heats crucibles filled with ultra-pure atomic elements under ultra high vacuum condition

Simurgh revolutionizes industrial CT imaging with AI, enhancing speed and accuracy in nondestructive testing for complex parts, reducing costs.