Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (26)
- Computing and Computational Sciences Directorate (38)
- Energy Science and Technology Directorate (223)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(135)
- User Facilities (27)
Researcher
- Yong Chae Lim
- Rangasayee Kannan
- Rob Moore II
- Zhili Feng
- Adam Stevens
- Alexandre Sorokine
- Brian Post
- Bryan Lim
- Clinton Stipek
- Daniel Adams
- Jessica Moehl
- Jian Chen
- Jiheon Jun
- Matthew Brahlek
- Peeyush Nandwana
- Philipe Ambrozio Dias
- Priyanshi Agrawal
- Roger G Miller
- Ryan Dehoff
- Sarah Graham
- Sudarsanam Babu
- Taylor Hauser
- Tomas Grejtak
- Viswadeep Lebakula
- Wei Zhang
- William Peter
- Yiyu Wang
- Yukinori Yamamoto

A finite element approach integrated with a novel constitute model to predict phase change, residual stresses and part deformation.

Understanding building height is imperative to the overall study of energy efficiency, population distribution, urban morphologies, emergency response, among others. Currently, existing approaches for modelling building height at scale are hindered by two pervasive issues.

A new nanostructured bainitic steel with accelerated kinetics for bainite formation at 200 C was designed using a coupled CALPHAD, machine learning, and data mining approach.

The technologies provide a coating method to produce corrosion resistant and electrically conductive coating layer on metallic bipolar plates for hydrogen fuel cell and hydrogen electrolyzer applications.

Welding high temperature and/or high strength materials for aerospace or automobile manufacturing is challenging.

Molecular Beam Epitaxy is a traditional technique for the synthesis of thin film materials used in the semiconducting and microelectronics industry. In its essence, the MBE technique heats crucibles filled with ultra-pure atomic elements under ultra high vacuum condition