Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate
(29)
- Computing and Computational Sciences Directorate (39)
- Energy Science and Technology Directorate (229)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(138)
- User Facilities
(28)
Researcher
- Rob Moore II
- Benjamin Lawrie
- Brian Sanders
- Chengyun Hua
- Christopher Rouleau
- Costas Tsouris
- Gabor Halasz
- Gerald Tuskan
- Gs Jung
- Gyoung Gug Jang
- Ilenne Del Valle Kessra
- Ilia N Ivanov
- Isaiah Dishner
- Ivan Vlassiouk
- Jeff Foster
- Jerry Parks
- Jiaqiang Yan
- John F Cahill
- Jong K Keum
- Josh Michener
- Liangyu Qian
- Matthew Brahlek
- Mina Yoon
- Paul Abraham
- Petro Maksymovych
- Radu Custelcean
- Vilmos Kertesz
- Xiaohan Yang
- Yang Liu

Enzymes for synthesis of sequenced oligoamide triads and tetrads that can be polymerized into sequenced copolyamides.
Contact
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

Detection of gene expression in plants is critical for understanding the molecular basis of plant physiology and plant responses to drought, stress, climate change, microbes, insects and other factors.

This technology is a laser-based heating unit that offers rapid heating profiles on a research scale with minimal incidental heating of materials processing environments.

When a magnetic field is applied to a type-II superconductor, it penetrates the superconductor in a thin cylindrical line known as a vortex line. Traditional methods to manipulate these vortices are limited in precision and affect a broad area.

Molecular Beam Epitaxy is a traditional technique for the synthesis of thin film materials used in the semiconducting and microelectronics industry. In its essence, the MBE technique heats crucibles filled with ultra-pure atomic elements under ultra high vacuum condition

Direct-acting antivirals are needed to combat coronavirus disease 2019 (COVID-19), which is caused by severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2).

A novel molecular sorbent system for low energy CO2 regeneration is developed by employing CO2-responsive molecules and salt in aqueous media where a precipitating CO2--salt fractal network is formed, resulting in solid-phase formation and sedimentation.

There is a critical need for new antiviral drugs for treating infections of severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2).