Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (29)
- Computing and Computational Sciences Directorate (39)
- Energy Science and Technology Directorate
(229)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(138)
- User Facilities (28)
Researcher
- Ali Passian
- Gabriel Veith
- Guang Yang
- Kyle Gluesenkamp
- Michelle Lehmann
- Beth L Armstrong
- Joseph Chapman
- Nicholas Peters
- Robert Sacci
- Tomonori Saito
- Bo Shen
- Ethan Self
- Hsuan-Hao Lu
- Jaswinder Sharma
- Joseph Lukens
- Melanie Moses-DeBusk Debusk
- Muneer Alshowkan
- Sergiy Kalnaus
- Alexandra Moy
- Alexey Serov
- Amanda Musgrove
- Amit K Naskar
- Anees Alnajjar
- Anisur Rahman
- Anna M Mills
- Benjamin L Doughty
- Brian Williams
- Chanho Kim
- Claire Marvinney
- Dhruba Deka
- Georgios Polyzos
- Harper Jordan
- Ilias Belharouak
- James Manley
- Joel Asiamah
- Joel Dawson
- Jun Yang
- Khryslyn G Araño
- Logan Kearney
- Mariam Kiran
- Matthew S Chambers
- Michael Toomey
- Nance Ericson
- Nancy Dudney
- Navin Kumar
- Nihal Kanbargi
- Sreshtha Sinha Majumdar
- Srikanth Yoginath
- Tugba Turnaoglu
- Varisara Tansakul
- Vera Bocharova
- Xiang Lyu
- Xiaobing Liu
- Yeonshil Park
- Yifeng Hu

The present invention is a carbon nanofiber composite for use as the cathode matrix in an alkali-metal polysulfide flow battery. The CNF composite demonstrates an improvement in sulfur utilization compared to carbon paper alone.

Process to coat air and or moisture sensitive solid electrolytes for all solid state batteries.
Contact
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

This invention utilizes a custom-synthesized vinyl trifluoromethanesulfonimide (VTFSI) salt and an alcohol containing small molecule or polymer for the synthesis of novel single-ion conducting polymer electrolytes for the use in Li-ion and beyond Li-ion batteries, fuel cells,

Here we present a solution for practically demonstrating path-aware routing and visualizing a self-driving network.

Technologies directed to polarization agnostic continuous variable quantum key distribution are described.
Contact:
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

The development of quantum networking requires architectures capable of dynamically reconfigurable entanglement distribution to meet diverse user needs and ensure tolerance against transmission disruptions.

The invention describes a configuration of dishwasher using thermoelectric heat pumps that can accomplish energy savings and enhanced drying performance.

This invention aims to develop a new feature for a heat pump water heater having a forced flow condenser, coupled with a mixing valve, and a new feature to maximize the first hour rating and provide quick response to hot water demand, comparable to a typical gas water heater.&

Polarization drift in quantum networks is a major issue. Fiber transforms a transmitted signal’s polarization differently depending on its environment.

This is a novel approach to enhance the performance and durability of all-solid-state batteries (ASSBs) by focusing on two primary components: the Si anode and the thin electrolyte integration.