Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities (27)
Researcher
- Beth L Armstrong
- Michael Kirka
- Gabriel Veith
- Guang Yang
- Michelle Lehmann
- Rangasayee Kannan
- Ryan Dehoff
- Tomonori Saito
- Adam Stevens
- Christopher Ledford
- Ethan Self
- Jaswinder Sharma
- Peeyush Nandwana
- Robert Sacci
- Sergiy Kalnaus
- Alexey Serov
- Alice Perrin
- Amanda Musgrove
- Amir K Ziabari
- Amit K Naskar
- Anisur Rahman
- Anna M Mills
- Brian Post
- Chanho Kim
- Corson Cramer
- Fred List III
- Georgios Polyzos
- Ilias Belharouak
- James Klett
- Jun Yang
- Keith Carver
- Khryslyn G Araño
- Logan Kearney
- Matthew S Chambers
- Michael Toomey
- Nancy Dudney
- Nihal Kanbargi
- Patxi Fernandez-Zelaia
- Philip Bingham
- Richard Howard
- Roger G Miller
- Sarah Graham
- Singanallur Venkatakrishnan
- Steve Bullock
- Sudarsanam Babu
- Thomas Butcher
- Trevor Aguirre
- Vera Bocharova
- Vincent Paquit
- William Peter
- Xiang Lyu
- Yan-Ru Lin
- Ying Yang
- Yukinori Yamamoto

Nearly all electrochemical approaches to CO2 conversion rely on traditional fuel cell type electrocatalysis where CO2 is bubbled through acidic or basic media. The resulting electrochemistry leads to excessive generation of H2 over micromoles of CO2 conversion.

This invention provides a method for differentiating if the cell is failing due to chemical/mechanical factors or due to Li dendrite formation by combing high throughput electronic measurement recording with fast data analysis to monitor the change of battery performance at th

Simurgh revolutionizes industrial CT imaging with AI, enhancing speed and accuracy in nondestructive testing for complex parts, reducing costs.

Early Transition Metal Stabilized High Capacity Oxidatively Stable Cathodes of Lithium-ion Batteries
The development of lithium-ion batteries (LIBs) is critical for advancing portable electronics, electric vehicles, and renewable energy storage solutions.