Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities (27)
Researcher
- Peeyush Nandwana
- Beth L Armstrong
- Gabriel Veith
- Guang Yang
- Michelle Lehmann
- Tomonori Saito
- Amit Shyam
- Blane Fillingim
- Brian Post
- Ethan Self
- Jaswinder Sharma
- Lauren Heinrich
- Rangasayee Kannan
- Robert Sacci
- Sergiy Kalnaus
- Sudarsanam Babu
- Thomas Feldhausen
- Yousub Lee
- Alexey Serov
- Alex Plotkowski
- Amanda Musgrove
- Amit K Naskar
- Andres Marquez Rossy
- Anisur Rahman
- Anna M Mills
- Bruce A Pint
- Bryan Lim
- Chanho Kim
- Christopher Fancher
- Georgios Polyzos
- Gordon Robertson
- Ilias Belharouak
- Jay Reynolds
- Jeff Brookins
- Jun Yang
- Khryslyn G Araño
- Logan Kearney
- Luke Chapman
- Matthew S Chambers
- Michael Toomey
- Nancy Dudney
- Nihal Kanbargi
- Peter Wang
- Ryan Dehoff
- Steven J Zinkle
- Sydney Murray III
- Tim Graening Seibert
- Tomas Grejtak
- Vasilis Tzoganis
- Vera Bocharova
- Weicheng Zhong
- Wei Tang
- Xiang Chen
- Xiang Lyu
- Yanli Wang
- Ying Yang
- Yiyu Wang
- Yun Liu
- Yutai Kato

This invention utilizes a custom-synthesized vinyl trifluoromethanesulfonimide (VTFSI) salt and an alcohol containing small molecule or polymer for the synthesis of novel single-ion conducting polymer electrolytes for the use in Li-ion and beyond Li-ion batteries, fuel cells,

We presented a novel apparatus and method for laser beam position detection and pointing stabilization using analog position-sensitive diodes (PSDs).

This is a novel approach to enhance the performance and durability of all-solid-state batteries (ASSBs) by focusing on two primary components: the Si anode and the thin electrolyte integration.

The lack of real-time insights into how materials evolve during laser powder bed fusion has limited the adoption by inhibiting part qualification. The developed approach provides key data needed to fabricate born qualified parts.

Fabrication methods are needed that are easily scalable, will enable facile manufacturing of SSEs that are < 50 µm thick to attain high energy density, and also exhibit good stability at the interface of the anode. Specifically, Wu et al.

We developed and incorporated two innovative mPET/Cu and mPET/Al foils as current collectors in LIBs to enhance cell energy density under XFC conditions.

A new nanostructured bainitic steel with accelerated kinetics for bainite formation at 200 C was designed using a coupled CALPHAD, machine learning, and data mining approach.

This invention utilizes a salt and an amine containing small molecule or polymer for the synthesis of a bulky anionic salt or containing single-ion conducting polymer electrolyte for the use in Li-ion and beyond Li-ion batteries.
Next generation batteries for electric vehicles (EVs) and other manufacturing needs require solid-state batteries made with high-performance solid electrolytes. These thin films are critical components but are difficult to manufacture to meet performance standards.