Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (29)
- Computing and Computational Sciences Directorate (39)
- Energy Science and Technology Directorate (229)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(138)
- User Facilities (28)
Researcher
- Andrzej Nycz
- Ali Passian
- Chris Masuo
- Ryan Dehoff
- Vincent Paquit
- Gabriel Veith
- Guang Yang
- Michelle Lehmann
- Peter Wang
- Alex Walters
- Beth L Armstrong
- Brian Post
- Joseph Chapman
- Michael Kirka
- Nicholas Peters
- Rangasayee Kannan
- Robert Sacci
- Tomonori Saito
- Venkatakrishnan Singanallur Vaidyanathan
- Adam Stevens
- Alex Roschli
- Amir K Ziabari
- Brian Gibson
- Clay Leach
- Ethan Self
- Hsuan-Hao Lu
- Jaswinder Sharma
- Joseph Lukens
- Joshua Vaughan
- Luke Meyer
- Muneer Alshowkan
- Peeyush Nandwana
- Philip Bingham
- Sergiy Kalnaus
- Udaya C Kalluri
- William Carter
- Akash Jag Prasad
- Alexandra Moy
- Alexey Serov
- Alice Perrin
- Amanda Musgrove
- Amit K Naskar
- Amit Shyam
- Anees Alnajjar
- Anisur Rahman
- Anna M Mills
- Benjamin L Doughty
- Brian Williams
- Calen Kimmell
- Cameron Adkins
- Canhai Lai
- Chanho Kim
- Chelo Chavez
- Christopher Fancher
- Christopher Ledford
- Chris Tyler
- Claire Marvinney
- Costas Tsouris
- Diana E Hun
- Erin Webb
- Evin Carter
- Georgios Polyzos
- Gina Accawi
- Gordon Robertson
- Gurneesh Jatana
- Harper Jordan
- Ilias Belharouak
- Isha Bhandari
- J.R. R Matheson
- James Haley
- James Parks II
- Jaydeep Karandikar
- Jay Reynolds
- Jeff Brookins
- Jeremy Malmstead
- Jesse Heineman
- Joel Asiamah
- Joel Dawson
- John Potter
- Jun Yang
- Khryslyn G Araño
- Kitty K Mccracken
- Liam White
- Logan Kearney
- Mariam Kiran
- Mark M Root
- Matthew S Chambers
- Michael Borish
- Michael Toomey
- Nance Ericson
- Nancy Dudney
- Nihal Kanbargi
- Obaid Rahman
- Oluwafemi Oyedeji
- Patxi Fernandez-Zelaia
- Philip Boudreaux
- Riley Wallace
- Ritin Mathews
- Roger G Miller
- Sarah Graham
- Soydan Ozcan
- Srikanth Yoginath
- Sudarsanam Babu
- Tyler Smith
- Varisara Tansakul
- Vera Bocharova
- Vladimir Orlyanchik
- William Peter
- Xiang Lyu
- Xianhui Zhao
- Xiaohan Yang
- Yan-Ru Lin
- Ying Yang
- Yukinori Yamamoto
- Zackary Snow

ORNL researchers have developed a deep learning-based approach to rapidly perform high-quality reconstructions from sparse X-ray computed tomography measurements.

The present invention is a carbon nanofiber composite for use as the cathode matrix in an alkali-metal polysulfide flow battery. The CNF composite demonstrates an improvement in sulfur utilization compared to carbon paper alone.

Process to coat air and or moisture sensitive solid electrolytes for all solid state batteries.
Contact
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

This invention utilizes a custom-synthesized vinyl trifluoromethanesulfonimide (VTFSI) salt and an alcohol containing small molecule or polymer for the synthesis of novel single-ion conducting polymer electrolytes for the use in Li-ion and beyond Li-ion batteries, fuel cells,

Here we present a solution for practically demonstrating path-aware routing and visualizing a self-driving network.

Technologies directed to polarization agnostic continuous variable quantum key distribution are described.
Contact:
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

The development of quantum networking requires architectures capable of dynamically reconfigurable entanglement distribution to meet diverse user needs and ensure tolerance against transmission disruptions.

System and method for part porosity monitoring of additively manufactured components using machining
In additive manufacturing, choice of process parameters for a given material and geometry can result in porosities in the build volume, which can result in scrap.

We have been working to adapt background oriented schlieren (BOS) imaging to directly visualize building leakage, which is fast and easy.

Polarization drift in quantum networks is a major issue. Fiber transforms a transmitted signal’s polarization differently depending on its environment.