Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities (27)
Researcher
- Chris Tyler
- Justin West
- Ritin Mathews
- Beth L Armstrong
- Gabriel Veith
- Guang Yang
- Michelle Lehmann
- Tomonori Saito
- David Olvera Trejo
- Ethan Self
- J.R. R Matheson
- Jaswinder Sharma
- Jaydeep Karandikar
- Robert Sacci
- Scott Smith
- Sergiy Kalnaus
- Akash Jag Prasad
- Alexey Serov
- Amanda Musgrove
- Amit K Naskar
- Anisur Rahman
- Anna M Mills
- Brian Gibson
- Brian Post
- Calen Kimmell
- Chanho Kim
- Emma Betters
- Georgios Polyzos
- Greg Corson
- Ilias Belharouak
- Jesse Heineman
- John Potter
- Josh B Harbin
- Jun Yang
- Khryslyn G Araño
- Logan Kearney
- Matthew S Chambers
- Michael Toomey
- Nancy Dudney
- Nihal Kanbargi
- Tony L Schmitz
- Vera Bocharova
- Vladimir Orlyanchik
- Xiang Lyu

Complex protective casings and housings are necessary for many applications, including combustion chambers of gas turbines used in aerospace engines. Manufacturing these components from forging and/or casting as a whole is challenging, costly, and time-consuming.

Compliance in a part, work holding, or base plate is beneficial for certain processes, but detrimental for machining and material removal.

In additive manufacturing large stresses are induced in the build plate and part interface. A result of theses stresses are deformations in the build plate and final component.

Nearly all electrochemical approaches to CO2 conversion rely on traditional fuel cell type electrocatalysis where CO2 is bubbled through acidic or basic media. The resulting electrochemistry leads to excessive generation of H2 over micromoles of CO2 conversion.

This invention provides a method for differentiating if the cell is failing due to chemical/mechanical factors or due to Li dendrite formation by combing high throughput electronic measurement recording with fast data analysis to monitor the change of battery performance at th

Early Transition Metal Stabilized High Capacity Oxidatively Stable Cathodes of Lithium-ion Batteries
The development of lithium-ion batteries (LIBs) is critical for advancing portable electronics, electric vehicles, and renewable energy storage solutions.