Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities (27)
Researcher
- Vivek Sujan
- Beth L Armstrong
- Gabriel Veith
- Guang Yang
- Michelle Lehmann
- Omer Onar
- Tomonori Saito
- Adam Siekmann
- Erdem Asa
- Ethan Self
- Jaswinder Sharma
- Robert Sacci
- Sergiy Kalnaus
- Subho Mukherjee
- Vlastimil Kunc
- Ahmed Hassen
- Alexey Serov
- Amanda Musgrove
- Amit K Naskar
- Anisur Rahman
- Anna M Mills
- Chanho Kim
- Dan Coughlin
- Georgios Polyzos
- Hyeonsup Lim
- Ilias Belharouak
- Isabelle Snyder
- Jim Tobin
- Josh Crabtree
- Jun Yang
- Khryslyn G Araño
- Kim Sitzlar
- Logan Kearney
- Matthew S Chambers
- Merlin Theodore
- Michael Toomey
- Nancy Dudney
- Nihal Kanbargi
- Shajjad Chowdhury
- Steven Guzorek
- Subhabrata Saha
- Vera Bocharova
- Vipin Kumar
- Xiang Lyu

This invention utilizes a custom-synthesized vinyl trifluoromethanesulfonimide (VTFSI) salt and an alcohol containing small molecule or polymer for the synthesis of novel single-ion conducting polymer electrolytes for the use in Li-ion and beyond Li-ion batteries, fuel cells,

The growing demand for electric vehicles (EVs) has necessitated significant advancements in EV charging technologies to ensure efficient and reliable operation.

The growing demand for renewable energy sources has propelled the development of advanced power conversion systems, particularly in applications involving fuel cells.

This is a novel approach to enhance the performance and durability of all-solid-state batteries (ASSBs) by focusing on two primary components: the Si anode and the thin electrolyte integration.

Fabrication methods are needed that are easily scalable, will enable facile manufacturing of SSEs that are < 50 µm thick to attain high energy density, and also exhibit good stability at the interface of the anode. Specifically, Wu et al.

We developed and incorporated two innovative mPET/Cu and mPET/Al foils as current collectors in LIBs to enhance cell energy density under XFC conditions.

This invention utilizes a salt and an amine containing small molecule or polymer for the synthesis of a bulky anionic salt or containing single-ion conducting polymer electrolyte for the use in Li-ion and beyond Li-ion batteries.