Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities (27)
Researcher
- Beth L Armstrong
- Gabriel Veith
- Guang Yang
- Michelle Lehmann
- Sam Hollifield
- Tomonori Saito
- Chad Steed
- Ethan Self
- Jaswinder Sharma
- Junghoon Chae
- Mingyan Li
- Robert Sacci
- Sergiy Kalnaus
- Travis Humble
- Aaron Werth
- Alexey Serov
- Ali Passian
- Amanda Musgrove
- Amit K Naskar
- Anisur Rahman
- Anna M Mills
- Brian Weber
- Chanho Kim
- Emilio Piesciorovsky
- Gary Hahn
- Georgios Polyzos
- Harper Jordan
- Ilias Belharouak
- Isaac Sikkema
- Jason Jarnagin
- Joel Asiamah
- Joel Dawson
- Joseph Olatt
- Jun Yang
- Kevin Spakes
- Khryslyn G Araño
- Kunal Mondal
- Lilian V Swann
- Logan Kearney
- Luke Koch
- Mahim Mathur
- Mark Provo II
- Mary A Adkisson
- Matthew S Chambers
- Michael Toomey
- Nance Ericson
- Nancy Dudney
- Nihal Kanbargi
- Oscar Martinez
- Raymond Borges Hink
- Rob Root
- Samudra Dasgupta
- Srikanth Yoginath
- T Oesch
- Varisara Tansakul
- Vera Bocharova
- Xiang Lyu
- Yarom Polsky
21 - 26 of 26 Results

Nearly all electrochemical approaches to CO2 conversion rely on traditional fuel cell type electrocatalysis where CO2 is bubbled through acidic or basic media. The resulting electrochemistry leads to excessive generation of H2 over micromoles of CO2 conversion.

This invention provides a method for differentiating if the cell is failing due to chemical/mechanical factors or due to Li dendrite formation by combing high throughput electronic measurement recording with fast data analysis to monitor the change of battery performance at th

Early Transition Metal Stabilized High Capacity Oxidatively Stable Cathodes of Lithium-ion Batteries
The development of lithium-ion batteries (LIBs) is critical for advancing portable electronics, electric vehicles, and renewable energy storage solutions.