Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (29)
- Computing and Computational Sciences Directorate (39)
- Energy Science and Technology Directorate (229)
- Fusion and Fission Energy and Science Directorate (24)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(138)
- User Facilities (28)
- (-) Information Technology Services Directorate (3)
Researcher
- Edgar Lara-Curzio
- Joseph Chapman
- Nicholas Peters
- Eric Wolfe
- Hsuan-Hao Lu
- Joseph Lukens
- Muneer Alshowkan
- Steven J Zinkle
- Yanli Wang
- Ying Yang
- Yutai Kato
- Adam Willoughby
- Anees Alnajjar
- Annetta Burger
- Bishnu Prasad Thapaliya
- Brandon Johnston
- Brian Williams
- Bruce A Pint
- Carter Christopher
- Chance C Brown
- Charles Hawkins
- Debraj De
- Frederic Vautard
- Gautam Malviya Thakur
- James Gaboardi
- Jason Jarnagin
- Jesse McGaha
- Kevin Spakes
- Kevin Sparks
- Lilian V Swann
- Liz McBride
- Mariam Kiran
- Marie Romedenne
- Mark Provo II
- Nidia Gallego
- Rishi Pillai
- Rob Root
- Sam Hollifield
- Tim Graening Seibert
- Todd Thomas
- Weicheng Zhong
- Wei Tang
- Xiang Chen
- Xiuling Nie

Often there are major challenges in developing diverse and complex human mobility metrics systematically and quickly.

Here we present a solution for practically demonstrating path-aware routing and visualizing a self-driving network.

Technologies directed to polarization agnostic continuous variable quantum key distribution are described.
Contact:
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

The ever-changing cellular communication landscape makes it difficult to identify, map, and localize commercial and private cellular base stations (PCBS).

The development of quantum networking requires architectures capable of dynamically reconfigurable entanglement distribution to meet diverse user needs and ensure tolerance against transmission disruptions.

Polarization drift in quantum networks is a major issue. Fiber transforms a transmitted signal’s polarization differently depending on its environment.

V-Cr-Ti alloys have been proposed as candidate structural materials in fusion reactor blanket concepts with operation temperatures greater than that for reduced activation ferritic martensitic steels (RAFMs).

This invention addresses a key challenge in quantum communication networks by developing a controlled-NOT (CNOT) gate that operates between two degrees of freedom (DoFs) within a single photon: polarization and frequency.

The microreactor design addresses the need to understand molten salt-assisted electrochemical processes at a controlled scale, enabling real-time observation of structural changes and kinetics.

With the ever-growing reliance on batteries, the need for the chemicals and materials to produce these batteries is also growing accordingly. One area of critical concern is the need for high quality graphite to ensure adequate energy storage capacity and battery stability.