Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities (27)
Researcher
- Ali Passian
- Michael Kirka
- Joseph Chapman
- Nicholas Peters
- Rangasayee Kannan
- Ryan Dehoff
- Ying Yang
- Adam Stevens
- Christopher Ledford
- Edgar Lara-Curzio
- Hsuan-Hao Lu
- Joseph Lukens
- Muneer Alshowkan
- Peeyush Nandwana
- Steven J Zinkle
- Yanli Wang
- Yutai Kato
- Adam Willoughby
- Alice Perrin
- Amir K Ziabari
- Anees Alnajjar
- Beth L Armstrong
- Bishnu Prasad Thapaliya
- Brandon Johnston
- Brian Post
- Brian Williams
- Bruce A Pint
- Charles Hawkins
- Claire Marvinney
- Corson Cramer
- Eric Wolfe
- Frederic Vautard
- Fred List III
- Harper Jordan
- James Klett
- Joel Asiamah
- Joel Dawson
- Keith Carver
- Mariam Kiran
- Marie Romedenne
- Nance Ericson
- Nidia Gallego
- Patxi Fernandez-Zelaia
- Philip Bingham
- Richard Howard
- Rishi Pillai
- Roger G Miller
- Sarah Graham
- Singanallur Venkatakrishnan
- Srikanth Yoginath
- Steve Bullock
- Sudarsanam Babu
- Thomas Butcher
- Tim Graening Seibert
- Trevor Aguirre
- Varisara Tansakul
- Vincent Paquit
- Weicheng Zhong
- Wei Tang
- William Peter
- Xiang Chen
- Yan-Ru Lin
- Yukinori Yamamoto

Here we present a solution for practically demonstrating path-aware routing and visualizing a self-driving network.

Technologies directed to polarization agnostic continuous variable quantum key distribution are described.
Contact:
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

The development of quantum networking requires architectures capable of dynamically reconfigurable entanglement distribution to meet diverse user needs and ensure tolerance against transmission disruptions.

A pressure burst feature has been designed and demonstrated for relieving potentially hazardous excess pressure within irradiation capsules used in the ORNL High Flux Isotope Reactor (HFIR).

Polarization drift in quantum networks is a major issue. Fiber transforms a transmitted signal’s polarization differently depending on its environment.

V-Cr-Ti alloys have been proposed as candidate structural materials in fusion reactor blanket concepts with operation temperatures greater than that for reduced activation ferritic martensitic steels (RAFMs).

This invention addresses a key challenge in quantum communication networks by developing a controlled-NOT (CNOT) gate that operates between two degrees of freedom (DoFs) within a single photon: polarization and frequency.