Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate
(21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities (27)
Researcher
- Ali Passian
- Joseph Chapman
- Nicholas Peters
- Edgar Lara-Curzio
- Hsuan-Hao Lu
- Joseph Lukens
- Muneer Alshowkan
- Steven J Zinkle
- Yanli Wang
- Ying Yang
- Yutai Kato
- Adam Willoughby
- Anees Alnajjar
- Bishnu Prasad Thapaliya
- Brandon Johnston
- Brian Williams
- Bruce A Pint
- Callie Goetz
- Charles Hawkins
- Christopher Hobbs
- Claire Marvinney
- Eddie Lopez Honorato
- Eric Wolfe
- Frederic Vautard
- Fred List III
- Harper Jordan
- Joel Asiamah
- Joel Dawson
- Keith Carver
- Mariam Kiran
- Marie Romedenne
- Matt Kurley III
- Nance Ericson
- Nidia Gallego
- Richard Howard
- Rishi Pillai
- Rodney D Hunt
- Ryan Heldt
- Srikanth Yoginath
- Thomas Butcher
- Tim Graening Seibert
- Tyler Gerczak
- Varisara Tansakul
- Weicheng Zhong
- Wei Tang
- Xiang Chen

Here we present a solution for practically demonstrating path-aware routing and visualizing a self-driving network.

Technologies directed to polarization agnostic continuous variable quantum key distribution are described.
Contact:
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

The development of quantum networking requires architectures capable of dynamically reconfigurable entanglement distribution to meet diverse user needs and ensure tolerance against transmission disruptions.

A pressure burst feature has been designed and demonstrated for relieving potentially hazardous excess pressure within irradiation capsules used in the ORNL High Flux Isotope Reactor (HFIR).

Polarization drift in quantum networks is a major issue. Fiber transforms a transmitted signal’s polarization differently depending on its environment.

V-Cr-Ti alloys have been proposed as candidate structural materials in fusion reactor blanket concepts with operation temperatures greater than that for reduced activation ferritic martensitic steels (RAFMs).

This invention addresses a key challenge in quantum communication networks by developing a controlled-NOT (CNOT) gate that operates between two degrees of freedom (DoFs) within a single photon: polarization and frequency.