Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities (27)
Researcher
- Ali Passian
- Peeyush Nandwana
- Joseph Chapman
- Nicholas Peters
- Amit Shyam
- Blane Fillingim
- Brian Post
- Edgar Lara-Curzio
- Hsuan-Hao Lu
- Joseph Lukens
- Lauren Heinrich
- Muneer Alshowkan
- Rangasayee Kannan
- Steven J Zinkle
- Sudarsanam Babu
- Thomas Feldhausen
- Yanli Wang
- Ying Yang
- Yousub Lee
- Yutai Kato
- Adam Willoughby
- Alex Plotkowski
- Andres Marquez Rossy
- Anees Alnajjar
- Bishnu Prasad Thapaliya
- Brandon Johnston
- Brian Williams
- Bruce A Pint
- Bryan Lim
- Charles Hawkins
- Christopher Fancher
- Claire Marvinney
- Eric Wolfe
- Frederic Vautard
- Gordon Robertson
- Harper Jordan
- Jay Reynolds
- Jeff Brookins
- Joel Asiamah
- Joel Dawson
- Mariam Kiran
- Marie Romedenne
- Nance Ericson
- Nidia Gallego
- Peter Wang
- Rishi Pillai
- Ryan Dehoff
- Srikanth Yoginath
- Tim Graening Seibert
- Tomas Grejtak
- Varisara Tansakul
- Weicheng Zhong
- Wei Tang
- Xiang Chen
- Yiyu Wang

Here we present a solution for practically demonstrating path-aware routing and visualizing a self-driving network.

Technologies directed to polarization agnostic continuous variable quantum key distribution are described.
Contact:
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

The development of quantum networking requires architectures capable of dynamically reconfigurable entanglement distribution to meet diverse user needs and ensure tolerance against transmission disruptions.

Polarization drift in quantum networks is a major issue. Fiber transforms a transmitted signal’s polarization differently depending on its environment.

V-Cr-Ti alloys have been proposed as candidate structural materials in fusion reactor blanket concepts with operation temperatures greater than that for reduced activation ferritic martensitic steels (RAFMs).

The lack of real-time insights into how materials evolve during laser powder bed fusion has limited the adoption by inhibiting part qualification. The developed approach provides key data needed to fabricate born qualified parts.

This invention addresses a key challenge in quantum communication networks by developing a controlled-NOT (CNOT) gate that operates between two degrees of freedom (DoFs) within a single photon: polarization and frequency.