Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (29)
- Computing and Computational Sciences Directorate (39)
- Energy Science and Technology Directorate (229)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(138)
- User Facilities (28)
Researcher
- Brian Post
- Chris Tyler
- Justin West
- Peter Wang
- Andrzej Nycz
- Ritin Mathews
- Blane Fillingim
- Chris Masuo
- Edgar Lara-Curzio
- Peeyush Nandwana
- Sudarsanam Babu
- Thomas Feldhausen
- Adam Stevens
- Ahmed Hassen
- David Olvera Trejo
- Eric Wolfe
- J.R. R Matheson
- Jaydeep Karandikar
- Joshua Vaughan
- Lauren Heinrich
- Michael Kirka
- Rangasayee Kannan
- Ryan Dehoff
- Scott Smith
- Steven J Zinkle
- William Carter
- Yanli Wang
- Ying Yang
- Yousub Lee
- Yutai Kato
- Adam Willoughby
- Akash Jag Prasad
- Alex Roschli
- Amir K Ziabari
- Amit Shyam
- Amy Elliott
- Beth L Armstrong
- Bishnu Prasad Thapaliya
- Brandon Johnston
- Brian Gibson
- Bruce A Pint
- Calen Kimmell
- Cameron Adkins
- Charles Hawkins
- Christopher Fancher
- Christopher Ledford
- Corson Cramer
- Craig Blue
- Emma Betters
- Frederic Vautard
- Fred List III
- Gordon Robertson
- Greg Corson
- Isha Bhandari
- James Klett
- Jay Reynolds
- Jeff Brookins
- Jesse Heineman
- John Lindahl
- John Potter
- Josh B Harbin
- Keith Carver
- Liam White
- Luke Meyer
- Marie Romedenne
- Michael Borish
- Nidia Gallego
- Philip Bingham
- Richard Howard
- Rishi Pillai
- Roger G Miller
- Sarah Graham
- Steve Bullock
- Steven Guzorek
- Thomas Butcher
- Tim Graening Seibert
- Tony L Schmitz
- Trevor Aguirre
- Venkatakrishnan Singanallur Vaidyanathan
- Vincent Paquit
- Vladimir Orlyanchik
- Vlastimil Kunc
- Weicheng Zhong
- Wei Tang
- William Peter
- Xiang Chen
- Yukinori Yamamoto

This invention discusses the methodology to calibrating a multi-robot system with an arbitrary number of agents to obtain single coordinate frame with high accuracy.

The first wall and blanket of a fusion energy reactor must maintain structural integrity and performance over long operational periods under neutron irradiation and minimize long-lived radioactive waste.

Technologies are described directed to reducing weld additive part distortion with spot compressions integrated into the build process. The disclosed technologies can be used to make weld additive parts with potentially better geometrical accuracy.

Complex protective casings and housings are necessary for many applications, including combustion chambers of gas turbines used in aerospace engines. Manufacturing these components from forging and/or casting as a whole is challenging, costly, and time-consuming.

Compliance in a part, work holding, or base plate is beneficial for certain processes, but detrimental for machining and material removal.

In additive manufacturing large stresses are induced in the build plate and part interface. A result of theses stresses are deformations in the build plate and final component.