Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate
(17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities (27)
Researcher
- Edgar Lara-Curzio
- Steven J Zinkle
- Yanli Wang
- Ying Yang
- Yutai Kato
- Aaron Werth
- Adam Willoughby
- Ali Passian
- Bishnu Prasad Thapaliya
- Brandon Johnston
- Bruce A Pint
- Bruce Moyer
- Charles Hawkins
- Debjani Pal
- Emilio Piesciorovsky
- Eric Wolfe
- Frederic Vautard
- Gary Hahn
- Harper Jordan
- Jason Jarnagin
- Jeffrey Einkauf
- Jennifer M Pyles
- Joel Asiamah
- Joel Dawson
- Justin Griswold
- Kuntal De
- Laetitia H Delmau
- Luke Sadergaski
- Marie Romedenne
- Mark Provo II
- Mike Zach
- Nance Ericson
- Nidia Gallego
- Padhraic L Mulligan
- Raymond Borges Hink
- Rishi Pillai
- Rob Root
- Sandra Davern
- Srikanth Yoginath
- Tim Graening Seibert
- Varisara Tansakul
- Weicheng Zhong
- Wei Tang
- Xiang Chen
- Yarom Polsky

Ruthenium is recovered from used nuclear fuel in an oxidizing environment by depositing the volatile RuO4 species onto a polymeric substrate.

The ever-changing cellular communication landscape makes it difficult to identify, map, and localize commercial and private cellular base stations (PCBS).

V-Cr-Ti alloys have been proposed as candidate structural materials in fusion reactor blanket concepts with operation temperatures greater than that for reduced activation ferritic martensitic steels (RAFMs).

With the ever-growing reliance on batteries, the need for the chemicals and materials to produce these batteries is also growing accordingly. One area of critical concern is the need for high quality graphite to ensure adequate energy storage capacity and battery stability.

Test facilities to evaluate materials compatibility in hydrogen are abundant for high pressure and low temperature (<100C).

A bonded carbon fiber monolith was made using a coal-based pitch precursor without a binder.

The first wall and blanket of a fusion energy reactor must maintain structural integrity and performance over long operational periods under neutron irradiation and minimize long-lived radioactive waste.

Spherical powders applied to nuclear targetry for isotope production will allow for enhanced heat transfer properties, tailored thermal conductivity and minimize time required for target fabrication and post processing.

Electrical utility substations are wired with intelligent electronic devices (IEDs), such as protective relays, power meters, and communication switches.

Biocompatible nanoparticles have been developed that can trap and retain therapeutic radionuclides and their byproducts at the cancer site. This is important to maximize the therapeutic effect of this treatment and minimize associated side effects.