Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities (27)
Researcher
- Alex Plotkowski
- Amit Shyam
- Joseph Chapman
- Nicholas Peters
- Srikanth Yoginath
- Ying Yang
- Anees Alnajjar
- Edgar Lara-Curzio
- Hsuan-Hao Lu
- James A Haynes
- James J Nutaro
- Joseph Lukens
- Muneer Alshowkan
- Pratishtha Shukla
- Sergiy Kalnaus
- Steven J Zinkle
- Sudip Seal
- Sumit Bahl
- Yanli Wang
- Yutai Kato
- Adam Willoughby
- Alice Perrin
- Ali Passian
- Andres Marquez Rossy
- Beth L Armstrong
- Bishnu Prasad Thapaliya
- Brandon Johnston
- Brian Williams
- Bruce A Pint
- Charles Hawkins
- Craig A Bridges
- Eric Wolfe
- Frederic Vautard
- Georgios Polyzos
- Gerry Knapp
- Harper Jordan
- Jaswinder Sharma
- Joel Asiamah
- Joel Dawson
- Jovid Rakhmonov
- Mariam Kiran
- Marie Romedenne
- Nageswara Rao
- Nance Ericson
- Nancy Dudney
- Nicholas Richter
- Nidia Gallego
- Peeyush Nandwana
- Rishi Pillai
- Ryan Dehoff
- Sheng Dai
- Sunyong Kwon
- Tim Graening Seibert
- Varisara Tansakul
- Weicheng Zhong
- Wei Tang
- Xiang Chen

Here we present a solution for practically demonstrating path-aware routing and visualizing a self-driving network.

Technologies directed to polarization agnostic continuous variable quantum key distribution are described.
Contact:
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

Currently available cast Al alloys are not suitable for various high-performance conductor applications, such as rotor, inverter, windings, busbar, heat exchangers/sinks, etc.

The development of quantum networking requires architectures capable of dynamically reconfigurable entanglement distribution to meet diverse user needs and ensure tolerance against transmission disruptions.

The invented alloys are a new family of Al-Mg alloys. This new family of Al-based alloys demonstrate an excellent ductility (10 ± 2 % elongation) despite the high content of impurities commonly observed in recycled aluminum.

Polarization drift in quantum networks is a major issue. Fiber transforms a transmitted signal’s polarization differently depending on its environment.

V-Cr-Ti alloys have been proposed as candidate structural materials in fusion reactor blanket concepts with operation temperatures greater than that for reduced activation ferritic martensitic steels (RAFMs).

This invention addresses a key challenge in quantum communication networks by developing a controlled-NOT (CNOT) gate that operates between two degrees of freedom (DoFs) within a single photon: polarization and frequency.

We developed and incorporated two innovative mPET/Cu and mPET/Al foils as current collectors in LIBs to enhance cell energy density under XFC conditions.

With the ever-growing reliance on batteries, the need for the chemicals and materials to produce these batteries is also growing accordingly. One area of critical concern is the need for high quality graphite to ensure adequate energy storage capacity and battery stability.