Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate
(217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities (27)
Researcher
- Vivek Sujan
- Beth L Armstrong
- Jun Qu
- Omer Onar
- Ying Yang
- Adam Siekmann
- Alex Plotkowski
- Amit Shyam
- Corson Cramer
- Edgar Lara-Curzio
- Erdem Asa
- James A Haynes
- Meghan Lamm
- Shajjad Chowdhury
- Steve Bullock
- Steven J Zinkle
- Subho Mukherjee
- Sumit Bahl
- Tomas Grejtak
- Yanli Wang
- Yutai Kato
- Adam Willoughby
- Alice Perrin
- Ben Lamm
- Bishnu Prasad Thapaliya
- Brandon Johnston
- Bruce A Pint
- Bryan Lim
- Charles Hawkins
- Christopher Ledford
- David J Mitchell
- Eric Wolfe
- Ethan Self
- Frederic Vautard
- Gabriel Veith
- Gerry Knapp
- Hyeonsup Lim
- Isabelle Snyder
- James Klett
- Jordan Wright
- Jovid Rakhmonov
- Khryslyn G Araño
- Marie Romedenne
- Marm Dixit
- Matthew S Chambers
- Michael Kirka
- Nancy Dudney
- Nicholas Richter
- Nidia Gallego
- Peeyush Nandwana
- Rangasayee Kannan
- Rishi Pillai
- Sergiy Kalnaus
- Sunyong Kwon
- Tim Graening Seibert
- Tolga Aytug
- Trevor Aguirre
- Weicheng Zhong
- Wei Tang
- Xiang Chen
- Yiyu Wang

Currently available cast Al alloys are not suitable for various high-performance conductor applications, such as rotor, inverter, windings, busbar, heat exchangers/sinks, etc.

The invented alloys are a new family of Al-Mg alloys. This new family of Al-based alloys demonstrate an excellent ductility (10 ± 2 % elongation) despite the high content of impurities commonly observed in recycled aluminum.

The growing demand for electric vehicles (EVs) has necessitated significant advancements in EV charging technologies to ensure efficient and reliable operation.

The growing demand for renewable energy sources has propelled the development of advanced power conversion systems, particularly in applications involving fuel cells.

V-Cr-Ti alloys have been proposed as candidate structural materials in fusion reactor blanket concepts with operation temperatures greater than that for reduced activation ferritic martensitic steels (RAFMs).

A new nanostructured bainitic steel with accelerated kinetics for bainite formation at 200 C was designed using a coupled CALPHAD, machine learning, and data mining approach.

With the ever-growing reliance on batteries, the need for the chemicals and materials to produce these batteries is also growing accordingly. One area of critical concern is the need for high quality graphite to ensure adequate energy storage capacity and battery stability.

Test facilities to evaluate materials compatibility in hydrogen are abundant for high pressure and low temperature (<100C).

This invention presents a multiport converter (MPC) based power supply to charge the 12 V and 24 V auxiliary batteries in heavy duty (HD) fuel cell (FC) electric vehicle (EV) power train.