Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities (27)
Researcher
- Michael Kirka
- Joseph Chapman
- Nicholas Peters
- Rangasayee Kannan
- Ryan Dehoff
- Adam Stevens
- Adam Willoughby
- Christopher Ledford
- Hsuan-Hao Lu
- Joseph Lukens
- Muneer Alshowkan
- Peeyush Nandwana
- Rishi Pillai
- Alice Perrin
- Amir K Ziabari
- Anees Alnajjar
- Beth L Armstrong
- Brandon Johnston
- Brian Post
- Brian Williams
- Bruce A Pint
- Charles Hawkins
- Corson Cramer
- Fred List III
- James Klett
- Jiheon Jun
- Keith Carver
- Mariam Kiran
- Marie Romedenne
- Patxi Fernandez-Zelaia
- Philip Bingham
- Priyanshi Agrawal
- Richard Howard
- Roger G Miller
- Sarah Graham
- Singanallur Venkatakrishnan
- Steve Bullock
- Sudarsanam Babu
- Thomas Butcher
- Trevor Aguirre
- Vincent Paquit
- William Peter
- Yan-Ru Lin
- Ying Yang
- Yong Chae Lim
- Yukinori Yamamoto
- Zhili Feng

Here we present a solution for practically demonstrating path-aware routing and visualizing a self-driving network.

Technologies directed to polarization agnostic continuous variable quantum key distribution are described.
Contact:
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

The development of quantum networking requires architectures capable of dynamically reconfigurable entanglement distribution to meet diverse user needs and ensure tolerance against transmission disruptions.

A pressure burst feature has been designed and demonstrated for relieving potentially hazardous excess pressure within irradiation capsules used in the ORNL High Flux Isotope Reactor (HFIR).

Polarization drift in quantum networks is a major issue. Fiber transforms a transmitted signal’s polarization differently depending on its environment.

A novel method that prevents detachment of an optical fiber from a metal/alloy tube and allows strain measurement up to higher temperatures, about 800 C has been developed. Standard commercial adhesives typically only survive up to about 400 C.

This invention addresses a key challenge in quantum communication networks by developing a controlled-NOT (CNOT) gate that operates between two degrees of freedom (DoFs) within a single photon: polarization and frequency.

Test facilities to evaluate materials compatibility in hydrogen are abundant for high pressure and low temperature (<100C).

Polarization drift in quantum networks is a major issue. Fiber transforms a transmitted signal’s polarization differently depending on its environment.
Red mud residue is an industrial waste product generated during the processing of bauxite ore to extract alumina for the steelmaking industry. Red mud is rich in minerals in bauxite like iron and aluminum oxide, but also heavy metals, including arsenic and mercury.