Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (26)
- Computing and Computational Sciences Directorate (38)
- Energy Science and Technology Directorate (223)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(135)
- User Facilities (27)
Researcher
- Adam Willoughby
- Chad Steed
- Junghoon Chae
- Mingyan Li
- Rishi Pillai
- Sam Hollifield
- Travis Humble
- Annetta Burger
- Brandon Johnston
- Brian Weber
- Bruce A Pint
- Carter Christopher
- Chance C Brown
- Charles Hawkins
- Debraj De
- Gautam Malviya Thakur
- Isaac Sikkema
- James Gaboardi
- Jesse McGaha
- Jiheon Jun
- Joseph Olatt
- Kevin Spakes
- Kevin Sparks
- Kunal Mondal
- Lilian V Swann
- Liz McBride
- Luke Koch
- Mahim Mathur
- Marie Romedenne
- Mary A Adkisson
- Oscar Martinez
- Priyanshi Agrawal
- Samudra Dasgupta
- Todd Thomas
- T Oesch
- Xiuling Nie
- Yong Chae Lim
- Zhili Feng

Often there are major challenges in developing diverse and complex human mobility metrics systematically and quickly.

A novel method that prevents detachment of an optical fiber from a metal/alloy tube and allows strain measurement up to higher temperatures, about 800 C has been developed. Standard commercial adhesives typically only survive up to about 400 C.

Test facilities to evaluate materials compatibility in hydrogen are abundant for high pressure and low temperature (<100C).

The QVis Quantum Device Circuit Optimization Module gives users the ability to map a circuit to a specific quantum devices based on the device specifications.

QVis is a visual analytics tool that helps uncover temporal and multivariate variations in noise properties of quantum devices.

The technologies provide a coating method to produce corrosion resistant and electrically conductive coating layer on metallic bipolar plates for hydrogen fuel cell and hydrogen electrolyzer applications.

Real-time tracking and monitoring of radioactive/nuclear materials during transportation is a critical need to ensure safety and security. Current technologies rely on simple tagging, using sensors attached to transport containers, but they have limitations.

The technology provides a transformational approach to digitally manufacture structural alloys with co- optimized strength and environmental resistance