Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate
(21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities (27)
Researcher
- Adam Willoughby
- Rishi Pillai
- Alexander I Wiechert
- Brandon Johnston
- Bruce A Pint
- Charles Hawkins
- Christopher Hobbs
- Costas Tsouris
- Debangshu Mukherjee
- Eddie Lopez Honorato
- Gs Jung
- Gyoung Gug Jang
- Jiheon Jun
- Marie Romedenne
- Matt Kurley III
- Md Inzamam Ul Haque
- Olga S Ovchinnikova
- Priyanshi Agrawal
- Radu Custelcean
- Rodney D Hunt
- Ryan Heldt
- Tyler Gerczak
- Yong Chae Lim
- Zhili Feng

Among the methods for point source carbon capture, the absorption of CO2 using aqueous amines (namely MEA) from the post-combustion gas stream is currently considered the most promising.

A novel method that prevents detachment of an optical fiber from a metal/alloy tube and allows strain measurement up to higher temperatures, about 800 C has been developed. Standard commercial adhesives typically only survive up to about 400 C.

Sintering additives to improve densification and microstructure control of UN provides a facile approach to producing high quality nuclear fuels.

Test facilities to evaluate materials compatibility in hydrogen are abundant for high pressure and low temperature (<100C).

The technologies provide a coating method to produce corrosion resistant and electrically conductive coating layer on metallic bipolar plates for hydrogen fuel cell and hydrogen electrolyzer applications.

The use of Fluidized Bed Chemical Vapor Deposition to coat particles or fibers is inherently slow and capital intensive, as it requires constant modifications to the equipment to account for changes in the characteristics of the substrates to be coated.

The technology provides a transformational approach to digitally manufacture structural alloys with co- optimized strength and environmental resistance

This innovative approach combines optical and spectral imaging data via machine learning to accurately predict cancer labels directly from tissue images.