Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate
(217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities (27)
Researcher
- Vivek Sujan
- Amit Shyam
- Alex Plotkowski
- Omer Onar
- Adam Siekmann
- Adam Willoughby
- Erdem Asa
- James A Haynes
- Rishi Pillai
- Ryan Dehoff
- Subho Mukherjee
- Sumit Bahl
- Adam Stevens
- Alice Perrin
- Andres Marquez Rossy
- Brandon Johnston
- Brian Post
- Bruce A Pint
- Charles Hawkins
- Christopher Fancher
- Dean T Pierce
- Gerry Knapp
- Gordon Robertson
- Hyeonsup Lim
- Isabelle Snyder
- Jay Reynolds
- Jeff Brookins
- Jiheon Jun
- Jovid Rakhmonov
- Marie Romedenne
- Nicholas Richter
- Peeyush Nandwana
- Peter Wang
- Priyanshi Agrawal
- Rangasayee Kannan
- Roger G Miller
- Sarah Graham
- Shajjad Chowdhury
- Sudarsanam Babu
- Sunyong Kwon
- William Peter
- Ying Yang
- Yong Chae Lim
- Yukinori Yamamoto
- Zhili Feng

Currently available cast Al alloys are not suitable for various high-performance conductor applications, such as rotor, inverter, windings, busbar, heat exchangers/sinks, etc.

The invented alloys are a new family of Al-Mg alloys. This new family of Al-based alloys demonstrate an excellent ductility (10 ± 2 % elongation) despite the high content of impurities commonly observed in recycled aluminum.

The growing demand for electric vehicles (EVs) has necessitated significant advancements in EV charging technologies to ensure efficient and reliable operation.

The growing demand for renewable energy sources has propelled the development of advanced power conversion systems, particularly in applications involving fuel cells.

The lack of real-time insights into how materials evolve during laser powder bed fusion has limited the adoption by inhibiting part qualification. The developed approach provides key data needed to fabricate born qualified parts.

A novel method that prevents detachment of an optical fiber from a metal/alloy tube and allows strain measurement up to higher temperatures, about 800 C has been developed. Standard commercial adhesives typically only survive up to about 400 C.

Test facilities to evaluate materials compatibility in hydrogen are abundant for high pressure and low temperature (<100C).

This invention presents a multiport converter (MPC) based power supply to charge the 12 V and 24 V auxiliary batteries in heavy duty (HD) fuel cell (FC) electric vehicle (EV) power train.