Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate
(21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities (27)
Researcher
- Sam Hollifield
- Adam Willoughby
- Chad Steed
- Hongbin Sun
- Junghoon Chae
- Mingyan Li
- Prashant Jain
- Rishi Pillai
- Travis Humble
- Aaron Werth
- Ali Passian
- Brandon Johnston
- Brian Weber
- Bruce A Pint
- Charles Hawkins
- Emilio Piesciorovsky
- Gary Hahn
- Harper Jordan
- Ian Greenquist
- Ilias Belharouak
- Isaac Sikkema
- Jason Jarnagin
- Jiheon Jun
- Joel Asiamah
- Joel Dawson
- Joseph Olatt
- Kevin Spakes
- Kunal Mondal
- Lilian V Swann
- Luke Koch
- Mahim Mathur
- Marie Romedenne
- Mark Provo II
- Mary A Adkisson
- Nance Ericson
- Nate See
- Nithin Panicker
- Oscar Martinez
- Pradeep Ramuhalli
- Praveen Cheekatamarla
- Priyanshi Agrawal
- Raymond Borges Hink
- Rob Root
- Ruhul Amin
- Samudra Dasgupta
- Srikanth Yoginath
- T Oesch
- Varisara Tansakul
- Vishaldeep Sharma
- Vittorio Badalassi
- Yarom Polsky
- Yong Chae Lim
- Zhili Feng

The ever-changing cellular communication landscape makes it difficult to identify, map, and localize commercial and private cellular base stations (PCBS).

The invention presented here addresses key challenges associated with counterfeit refrigerants by ensuring safety, maintaining system performance, supporting environmental compliance, and mitigating health and legal risks.

A novel method that prevents detachment of an optical fiber from a metal/alloy tube and allows strain measurement up to higher temperatures, about 800 C has been developed. Standard commercial adhesives typically only survive up to about 400 C.

Test facilities to evaluate materials compatibility in hydrogen are abundant for high pressure and low temperature (<100C).

A novel approach is presented herein to improve time to onset of natural convection stemming from fuel element porosity during a failure mode of a nuclear reactor.

The QVis Quantum Device Circuit Optimization Module gives users the ability to map a circuit to a specific quantum devices based on the device specifications.

QVis is a visual analytics tool that helps uncover temporal and multivariate variations in noise properties of quantum devices.

Recent advances in magnetic fusion (tokamak) technology have attracted billions of dollars of investments in startups from venture capitals and corporations to develop devices demonstrating net energy gain in a self-heated burning plasma, such as SPARC (under construction) and