Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (29)
- Computing and Computational Sciences Directorate (39)
- Energy Science and Technology Directorate (229)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(138)
- User Facilities (28)
Researcher
- Benjamin Manard
- Cyril Thompson
- Alexander I Wiechert
- Benjamin Lawrie
- Charles F Weber
- Chengyun Hua
- Costas Tsouris
- Dave Willis
- Gabor Halasz
- Jiaqiang Yan
- Joanna Mcfarlane
- Jonathan Willocks
- Luke Chapman
- Matt Vick
- Petro Maksymovych
- Sydney Murray III
- Vandana Rallabandi
- Vasilis Tzoganis
- Vasiliy Morozov
- Yun Liu

High-gradient magnetic filtration (HGMF) is a non-destructive separation technique that captures magnetic constituents from a matrix containing other non-magnetic species. One characteristic that actinide metals share across much of the group is that they are magnetic.

We presented a novel apparatus and method for laser beam position detection and pointing stabilization using analog position-sensitive diodes (PSDs).

When a magnetic field is applied to a type-II superconductor, it penetrates the superconductor in a thin cylindrical line known as a vortex line. Traditional methods to manipulate these vortices are limited in precision and affect a broad area.

High and ultra-high vacuum applications require seals that do not allow leaks. O-rings can break down over time, due to aging and exposure to radiation. Metallic seals can damage sealing surfaces, making replacement of the original seal very difficult.

The technology describes an electron beam in a storage ring as a quantum computer.