Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (29)
- Computing and Computational Sciences Directorate (39)
- Energy Science and Technology Directorate (229)
- Fusion and Fission Energy and Science Directorate
(24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (138)
- User Facilities (28)
Researcher
- Amit Shyam
- Beth L Armstrong
- Peeyush Nandwana
- Ying Yang
- Zhili Feng
- Alex Plotkowski
- Brian Post
- Edgar Lara-Curzio
- Hongbin Sun
- Jian Chen
- Joseph Chapman
- Jun Qu
- Nicholas Peters
- Rangasayee Kannan
- Ryan Dehoff
- Sudarsanam Babu
- Yong Chae Lim
- Adam Willoughby
- Alice Perrin
- Blane Fillingim
- Bruce A Pint
- Christopher Ledford
- Corson Cramer
- David S Parker
- Eric Wolfe
- Hsuan-Hao Lu
- James A Haynes
- Joseph Lukens
- Lauren Heinrich
- Meghan Lamm
- Michael Kirka
- Muneer Alshowkan
- Rishi Pillai
- Rob Moore II
- Steve Bullock
- Steven J Zinkle
- Sumit Bahl
- Thomas Feldhausen
- Tomas Grejtak
- Wei Zhang
- Yanli Wang
- Yousub Lee
- Yutai Kato
- Adam Stevens
- Andres Marquez Rossy
- Andrew F May
- Anees Alnajjar
- Ben Garrison
- Benjamin Lawrie
- Ben Lamm
- Bishnu Prasad Thapaliya
- Brad Johnson
- Brandon Johnston
- Brian Sales
- Brian Williams
- Bryan Lim
- Charles Hawkins
- Chengyun Hua
- Christopher Fancher
- Costas Tsouris
- Dali Wang
- David J Mitchell
- Dean T Pierce
- Ethan Self
- Frederic Vautard
- Gabor Halasz
- Gabriel Veith
- Gerry Knapp
- Glenn R Romanoski
- Gordon Robertson
- Govindarajan Muralidharan
- Gs Jung
- Gyoung Gug Jang
- Hsin Wang
- Ilias Belharouak
- James Klett
- Jay Reynolds
- Jeff Brookins
- Jiaqiang Yan
- Jiheon Jun
- Jong K Keum
- Jordan Wright
- Jovid Rakhmonov
- Khryslyn G Araño
- Mariam Kiran
- Marie Romedenne
- Marm Dixit
- Matthew Brahlek
- Matthew S Chambers
- Mike Zach
- Mina Yoon
- Nancy Dudney
- Nedim Cinbiz
- Nicholas Richter
- Nidia Gallego
- Patxi Fernandez-Zelaia
- Peter Wang
- Petro Maksymovych
- Pradeep Ramuhalli
- Praveen Cheekatamarla
- Priyanshi Agrawal
- Radu Custelcean
- Roger G Miller
- Rose Montgomery
- Ruhul Amin
- Sarah Graham
- Sergiy Kalnaus
- Shajjad Chowdhury
- Sunyong Kwon
- Thien D. Nguyen
- Thomas R Muth
- Tim Graening Seibert
- Tolga Aytug
- Trevor Aguirre
- Venugopal K Varma
- Vishaldeep Sharma
- Weicheng Zhong
- Wei Tang
- William Peter
- Xiang Chen
- Yan-Ru Lin
- Yiyu Wang
- Yukinori Yamamoto

In nuclear and industrial facilities, fine particles, including radioactive residues—can accumulate on the interior surfaces of ventilation ducts and equipment, posing serious safety and operational risks.

Here we present a solution for practically demonstrating path-aware routing and visualizing a self-driving network.

A finite element approach integrated with a novel constitute model to predict phase change, residual stresses and part deformation.

Technologies directed to polarization agnostic continuous variable quantum key distribution are described.
Contact:
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

Currently available cast Al alloys are not suitable for various high-performance conductor applications, such as rotor, inverter, windings, busbar, heat exchangers/sinks, etc.

The development of quantum networking requires architectures capable of dynamically reconfigurable entanglement distribution to meet diverse user needs and ensure tolerance against transmission disruptions.

The invented alloys are a new family of Al-Mg alloys. This new family of Al-based alloys demonstrate an excellent ductility (10 ± 2 % elongation) despite the high content of impurities commonly observed in recycled aluminum.

The invention presented here addresses key challenges associated with counterfeit refrigerants by ensuring safety, maintaining system performance, supporting environmental compliance, and mitigating health and legal risks.

Polarization drift in quantum networks is a major issue. Fiber transforms a transmitted signal’s polarization differently depending on its environment.

V-Cr-Ti alloys have been proposed as candidate structural materials in fusion reactor blanket concepts with operation temperatures greater than that for reduced activation ferritic martensitic steels (RAFMs).