Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities (27)
Researcher
- Sheng Dai
- Ali Passian
- Amit Shyam
- Beth L Armstrong
- Parans Paranthaman
- Peeyush Nandwana
- Bishnu Prasad Thapaliya
- Ying Yang
- Zhenzhen Yang
- Alex Plotkowski
- Brian Post
- Craig A Bridges
- Joseph Chapman
- Jun Qu
- Nicholas Peters
- Rangasayee Kannan
- Ryan Dehoff
- Shannon M Mahurin
- Sudarsanam Babu
- Yong Chae Lim
- Adam Willoughby
- Alice Perrin
- Anees Alnajjar
- Blane Fillingim
- Bruce A Pint
- Christopher Ledford
- Corson Cramer
- David S Parker
- Edgar Lara-Curzio
- Hsuan-Hao Lu
- Ilja Popovs
- James A Haynes
- Joseph Lukens
- Lauren Heinrich
- Li-Qi Qiu
- Meghan Lamm
- Michael Kirka
- Muneer Alshowkan
- Rishi Pillai
- Rob Moore II
- Saurabh Prakash Pethe
- Steve Bullock
- Steven J Zinkle
- Sumit Bahl
- Thomas Feldhausen
- Tolga Aytug
- Tomas Grejtak
- Uday Vaidya
- Yanli Wang
- Yousub Lee
- Yutai Kato
- Zhili Feng
- Adam Stevens
- Ahmed Hassen
- Alexei P Sokolov
- Andres Marquez Rossy
- Andrew F May
- Ben Garrison
- Ben Lamm
- Brad Johnson
- Brandon Johnston
- Brian Sales
- Brian Williams
- Bruce Moyer
- Bryan Lim
- Charles Hawkins
- Christopher Fancher
- Claire Marvinney
- Costas Tsouris
- David J Mitchell
- Dean T Pierce
- Eric Wolfe
- Ethan Self
- Frederic Vautard
- Gabriel Veith
- Gerry Knapp
- Glenn R Romanoski
- Gordon Robertson
- Govindarajan Muralidharan
- Gs Jung
- Gyoung Gug Jang
- Harper Jordan
- Hsin Wang
- James Klett
- Jayanthi Kumar
- Jay Reynolds
- Jeff Brookins
- Jian Chen
- Jiheon Jun
- Joel Asiamah
- Joel Dawson
- Jong K Keum
- Jordan Wright
- Jovid Rakhmonov
- Kaustubh Mungale
- Khryslyn G Araño
- Mariam Kiran
- Marie Romedenne
- Marm Dixit
- Matthew Brahlek
- Matthew S Chambers
- Mike Zach
- Mina Yoon
- Nageswara Rao
- Nance Ericson
- Nancy Dudney
- Nedim Cinbiz
- Nicholas Richter
- Nidia Gallego
- Patxi Fernandez-Zelaia
- Peter Wang
- Phillip Halstenberg
- Priyanshi Agrawal
- Radu Custelcean
- Roger G Miller
- Rose Montgomery
- Santa Jansone-Popova
- Sarah Graham
- Sergiy Kalnaus
- Shajjad Chowdhury
- Srikanth Yoginath
- Subhamay Pramanik
- Sunyong Kwon
- Tao Hong
- Thomas R Muth
- Tim Graening Seibert
- Tomonori Saito
- Trevor Aguirre
- Varisara Tansakul
- Venugopal K Varma
- Vlastimil Kunc
- Weicheng Zhong
- Wei Tang
- William Peter
- Xiang Chen
- Yan-Ru Lin
- Yiyu Wang
- Yukinori Yamamoto

Here we present a solution for practically demonstrating path-aware routing and visualizing a self-driving network.

Technologies directed to polarization agnostic continuous variable quantum key distribution are described.
Contact:
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

A novel strategy was developed to solve the limitations of the current sorbent systems in CO2 chemisorption in terms of energy consumption in CO2 release and improved CO2 uptake capacity.

Currently available cast Al alloys are not suitable for various high-performance conductor applications, such as rotor, inverter, windings, busbar, heat exchangers/sinks, etc.

The development of quantum networking requires architectures capable of dynamically reconfigurable entanglement distribution to meet diverse user needs and ensure tolerance against transmission disruptions.

The invented alloys are a new family of Al-Mg alloys. This new family of Al-based alloys demonstrate an excellent ductility (10 ± 2 % elongation) despite the high content of impurities commonly observed in recycled aluminum.

This invention introduces a novel sintering approach to produce hard carbon with a finely tuned microstructure, derived from biomass and plastic waste.

Polarization drift in quantum networks is a major issue. Fiber transforms a transmitted signal’s polarization differently depending on its environment.

V-Cr-Ti alloys have been proposed as candidate structural materials in fusion reactor blanket concepts with operation temperatures greater than that for reduced activation ferritic martensitic steels (RAFMs).

The lack of real-time insights into how materials evolve during laser powder bed fusion has limited the adoption by inhibiting part qualification. The developed approach provides key data needed to fabricate born qualified parts.