Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate
(217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities (27)
Researcher
- Sheng Dai
- Parans Paranthaman
- Bishnu Prasad Thapaliya
- Rafal Wojda
- Zhenzhen Yang
- Craig A Bridges
- Joseph Chapman
- Nicholas Peters
- Prasad Kandula
- Shannon M Mahurin
- Anees Alnajjar
- Edgar Lara-Curzio
- Hsuan-Hao Lu
- Ilja Popovs
- Joseph Lukens
- Li-Qi Qiu
- Muneer Alshowkan
- Saurabh Prakash Pethe
- Shajjad Chowdhury
- Tolga Aytug
- Uday Vaidya
- Vandana Rallabandi
- Ahmed Hassen
- Alexei P Sokolov
- Alex Plotkowski
- Ben Lamm
- Beth L Armstrong
- Brian Williams
- Bruce Moyer
- Christopher Fancher
- Eric Wolfe
- Frederic Vautard
- Jayanthi Kumar
- Kaustubh Mungale
- Marcio Magri Kimpara
- Mariam Kiran
- Meghan Lamm
- Mostak Mohammad
- Nageswara Rao
- Nidia Gallego
- Omer Onar
- Phillip Halstenberg
- Praveen Kumar
- Santa Jansone-Popova
- Subhamay Pramanik
- Subho Mukherjee
- Suman Debnath
- Tao Hong
- Tomonori Saito
- Vlastimil Kunc

Here we present a solution for practically demonstrating path-aware routing and visualizing a self-driving network.

Technologies directed to polarization agnostic continuous variable quantum key distribution are described.
Contact:
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

Misalignment issues of the PWPT system have been addressed. The intercell power transformer has been introduced in order to improve load sharing of the system during a mismatch of the primary single-phase coil and the secondary multi-phase coils.

A novel strategy was developed to solve the limitations of the current sorbent systems in CO2 chemisorption in terms of energy consumption in CO2 release and improved CO2 uptake capacity.

The development of quantum networking requires architectures capable of dynamically reconfigurable entanglement distribution to meet diverse user needs and ensure tolerance against transmission disruptions.

This invention introduces a novel sintering approach to produce hard carbon with a finely tuned microstructure, derived from biomass and plastic waste.

Polarization drift in quantum networks is a major issue. Fiber transforms a transmitted signal’s polarization differently depending on its environment.

This invention addresses a key challenge in quantum communication networks by developing a controlled-NOT (CNOT) gate that operates between two degrees of freedom (DoFs) within a single photon: polarization and frequency.

The increasing demand for high-purity lanthanides, essential for advanced technologies such as electronics, renewable energy, and medical applications, presents a significant challenge due to their similar chemical properties.