Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities (27)
Researcher
- Sheng Dai
- Parans Paranthaman
- Bishnu Prasad Thapaliya
- Zhenzhen Yang
- Amit K Naskar
- Craig A Bridges
- Edgar Lara-Curzio
- Joseph Chapman
- Nicholas Peters
- Shannon M Mahurin
- Anees Alnajjar
- Frederic Vautard
- Hsuan-Hao Lu
- Ilja Popovs
- Jaswinder Sharma
- Joseph Lukens
- Li-Qi Qiu
- Logan Kearney
- Michael Toomey
- Muneer Alshowkan
- Nihal Kanbargi
- Saurabh Prakash Pethe
- Tolga Aytug
- Uday Vaidya
- Ahmed Hassen
- Alexei P Sokolov
- Arit Das
- Benjamin L Doughty
- Ben Lamm
- Beth L Armstrong
- Brian Williams
- Bruce Moyer
- Christopher Bowland
- Eric Wolfe
- Felix L Paulauskas
- Holly Humphrey
- Jayanthi Kumar
- Kaustubh Mungale
- Mariam Kiran
- Meghan Lamm
- Nageswara Rao
- Nidia Gallego
- Phillip Halstenberg
- Robert E Norris Jr
- Santa Jansone-Popova
- Santanu Roy
- Shajjad Chowdhury
- Subhamay Pramanik
- Sumit Gupta
- Tao Hong
- Tomonori Saito
- Uvinduni Premadasa
- Vera Bocharova
- Vlastimil Kunc

Efficient thermal management in polymers is essential for developing lightweight, high-strength materials with multifunctional capabilities.

The disclosure is directed to optimized fiber geometries for use in carbon fiber reinforced polymers with increased compressive strength per unit cost. The disclosed fiber geometries reduce the material processing costs as well as increase the compressive strength.

Here we present a solution for practically demonstrating path-aware routing and visualizing a self-driving network.

Technologies directed to polarization agnostic continuous variable quantum key distribution are described.
Contact:
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

A novel strategy was developed to solve the limitations of the current sorbent systems in CO2 chemisorption in terms of energy consumption in CO2 release and improved CO2 uptake capacity.

The development of quantum networking requires architectures capable of dynamically reconfigurable entanglement distribution to meet diverse user needs and ensure tolerance against transmission disruptions.

This invention introduces a novel sintering approach to produce hard carbon with a finely tuned microstructure, derived from biomass and plastic waste.

A novel and cost-effective process for the activation of carbon fibers was established.
Contact
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

Polarization drift in quantum networks is a major issue. Fiber transforms a transmitted signal’s polarization differently depending on its environment.

This invention addresses a key challenge in quantum communication networks by developing a controlled-NOT (CNOT) gate that operates between two degrees of freedom (DoFs) within a single photon: polarization and frequency.