Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (26)
- Computing and Computational Sciences Directorate (38)
- Energy Science and Technology Directorate (223)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate
(20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(135)
- User Facilities (27)
Researcher
- Sheng Dai
- Ali Passian
- Parans Paranthaman
- Bishnu Prasad Thapaliya
- Zhenzhen Yang
- Craig A Bridges
- Joseph Chapman
- Nicholas Peters
- Shannon M Mahurin
- Anees Alnajjar
- Edgar Lara-Curzio
- Hsuan-Hao Lu
- Ilja Popovs
- Joseph Lukens
- Li-Qi Qiu
- Muneer Alshowkan
- Saurabh Prakash Pethe
- Tolga Aytug
- Uday Vaidya
- Viswadeep Lebakula
- Ahmed Hassen
- Alexandre Sorokine
- Alexei P Sokolov
- Annetta Burger
- Ben Lamm
- Beth L Armstrong
- Brian Williams
- Bruce Moyer
- Carter Christopher
- Chance C Brown
- Claire Marvinney
- Clinton Stipek
- Daniel Adams
- Debraj De
- Eric Wolfe
- Eve Tsybina
- Frederic Vautard
- Gautam Malviya Thakur
- Harper Jordan
- James Gaboardi
- Jayanthi Kumar
- Jesse McGaha
- Jessica Moehl
- Joel Asiamah
- Joel Dawson
- Kaustubh Mungale
- Kevin Sparks
- Liz McBride
- Mariam Kiran
- Meghan Lamm
- Nageswara Rao
- Nance Ericson
- Nidia Gallego
- Philipe Ambrozio Dias
- Phillip Halstenberg
- Santa Jansone-Popova
- Shajjad Chowdhury
- Srikanth Yoginath
- Subhamay Pramanik
- Tao Hong
- Taylor Hauser
- Todd Thomas
- Tomonori Saito
- Varisara Tansakul
- Vlastimil Kunc
- Xiuling Nie

Often there are major challenges in developing diverse and complex human mobility metrics systematically and quickly.

Here we present a solution for practically demonstrating path-aware routing and visualizing a self-driving network.

Understanding building height is imperative to the overall study of energy efficiency, population distribution, urban morphologies, emergency response, among others. Currently, existing approaches for modelling building height at scale are hindered by two pervasive issues.

Technologies directed to polarization agnostic continuous variable quantum key distribution are described.
Contact:
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

A novel strategy was developed to solve the limitations of the current sorbent systems in CO2 chemisorption in terms of energy consumption in CO2 release and improved CO2 uptake capacity.

The development of quantum networking requires architectures capable of dynamically reconfigurable entanglement distribution to meet diverse user needs and ensure tolerance against transmission disruptions.

This invention introduces a novel sintering approach to produce hard carbon with a finely tuned microstructure, derived from biomass and plastic waste.

Polarization drift in quantum networks is a major issue. Fiber transforms a transmitted signal’s polarization differently depending on its environment.

This invention addresses a key challenge in quantum communication networks by developing a controlled-NOT (CNOT) gate that operates between two degrees of freedom (DoFs) within a single photon: polarization and frequency.