Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate
(217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities (27)
Researcher
- Vivek Sujan
- Sheng Dai
- Ali Passian
- Parans Paranthaman
- Bishnu Prasad Thapaliya
- Zhenzhen Yang
- Craig A Bridges
- Omer Onar
- Shannon M Mahurin
- Adam Siekmann
- Edgar Lara-Curzio
- Erdem Asa
- Ilja Popovs
- Li-Qi Qiu
- Saurabh Prakash Pethe
- Shajjad Chowdhury
- Subho Mukherjee
- Tolga Aytug
- Uday Vaidya
- Ahmed Hassen
- Alexei P Sokolov
- Anees Alnajjar
- Ben Lamm
- Beth L Armstrong
- Bruce Moyer
- Claire Marvinney
- Eric Wolfe
- Frederic Vautard
- Harper Jordan
- Hyeonsup Lim
- Isabelle Snyder
- Jayanthi Kumar
- Joel Asiamah
- Joel Dawson
- Kaustubh Mungale
- Meghan Lamm
- Nageswara Rao
- Nance Ericson
- Nidia Gallego
- Phillip Halstenberg
- Santa Jansone-Popova
- Srikanth Yoginath
- Subhamay Pramanik
- Tao Hong
- Tomonori Saito
- Varisara Tansakul
- Vlastimil Kunc

A novel strategy was developed to solve the limitations of the current sorbent systems in CO2 chemisorption in terms of energy consumption in CO2 release and improved CO2 uptake capacity.

This invention introduces a novel sintering approach to produce hard carbon with a finely tuned microstructure, derived from biomass and plastic waste.

The growing demand for electric vehicles (EVs) has necessitated significant advancements in EV charging technologies to ensure efficient and reliable operation.

The growing demand for renewable energy sources has propelled the development of advanced power conversion systems, particularly in applications involving fuel cells.

The increasing demand for high-purity lanthanides, essential for advanced technologies such as electronics, renewable energy, and medical applications, presents a significant challenge due to their similar chemical properties.

With the ever-growing reliance on batteries, the need for the chemicals and materials to produce these batteries is also growing accordingly. One area of critical concern is the need for high quality graphite to ensure adequate energy storage capacity and battery stability.