Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate
(217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities (27)
Researcher
- Vivek Sujan
- Sheng Dai
- Parans Paranthaman
- Bishnu Prasad Thapaliya
- Ying Yang
- Zhenzhen Yang
- Craig A Bridges
- Omer Onar
- Shannon M Mahurin
- Adam Siekmann
- Alice Perrin
- Edgar Lara-Curzio
- Erdem Asa
- Ilja Popovs
- Li-Qi Qiu
- Saurabh Prakash Pethe
- Shajjad Chowdhury
- Steven J Zinkle
- Subho Mukherjee
- Tolga Aytug
- Uday Vaidya
- Yanli Wang
- Yutai Kato
- Ahmed Hassen
- Alexei P Sokolov
- Alex Plotkowski
- Amit Shyam
- Anees Alnajjar
- Ben Lamm
- Beth L Armstrong
- Bruce A Pint
- Bruce Moyer
- Christopher Ledford
- Costas Tsouris
- David S Parker
- Eric Wolfe
- Frederic Vautard
- Gerry Knapp
- Gs Jung
- Gyoung Gug Jang
- Hyeonsup Lim
- Isabelle Snyder
- James A Haynes
- Jayanthi Kumar
- Jong K Keum
- Kaustubh Mungale
- Meghan Lamm
- Michael Kirka
- Mina Yoon
- Nageswara Rao
- Nicholas Richter
- Nidia Gallego
- Patxi Fernandez-Zelaia
- Phillip Halstenberg
- Radu Custelcean
- Ryan Dehoff
- Santa Jansone-Popova
- Subhamay Pramanik
- Sumit Bahl
- Sunyong Kwon
- Tao Hong
- Tim Graening Seibert
- Tomonori Saito
- Vlastimil Kunc
- Weicheng Zhong
- Wei Tang
- Xiang Chen
- Yan-Ru Lin

A novel strategy was developed to solve the limitations of the current sorbent systems in CO2 chemisorption in terms of energy consumption in CO2 release and improved CO2 uptake capacity.

The invented alloys are a new family of Al-Mg alloys. This new family of Al-based alloys demonstrate an excellent ductility (10 ± 2 % elongation) despite the high content of impurities commonly observed in recycled aluminum.

This invention introduces a novel sintering approach to produce hard carbon with a finely tuned microstructure, derived from biomass and plastic waste.

The growing demand for electric vehicles (EVs) has necessitated significant advancements in EV charging technologies to ensure efficient and reliable operation.

The growing demand for renewable energy sources has propelled the development of advanced power conversion systems, particularly in applications involving fuel cells.

V-Cr-Ti alloys have been proposed as candidate structural materials in fusion reactor blanket concepts with operation temperatures greater than that for reduced activation ferritic martensitic steels (RAFMs).

The increasing demand for high-purity lanthanides, essential for advanced technologies such as electronics, renewable energy, and medical applications, presents a significant challenge due to their similar chemical properties.

With the ever-growing reliance on batteries, the need for the chemicals and materials to produce these batteries is also growing accordingly. One area of critical concern is the need for high quality graphite to ensure adequate energy storage capacity and battery stability.

This invention presents a multiport converter (MPC) based power supply to charge the 12 V and 24 V auxiliary batteries in heavy duty (HD) fuel cell (FC) electric vehicle (EV) power train.