Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities (27)
Researcher
- Lawrence {Larry} M Anovitz
- Yong Chae Lim
- Rangasayee Kannan
- Adam Stevens
- Andrew G Stack
- Brian Post
- Bruce Moyer
- Bryan Lim
- Debjani Pal
- Jeffrey Einkauf
- Jennifer M Pyles
- Jiheon Jun
- Juliane Weber
- Justin Griswold
- Kuntal De
- Laetitia H Delmau
- Luke Sadergaski
- Mike Zach
- Padhraic L Mulligan
- Peeyush Nandwana
- Peng Yang
- Priyanshi Agrawal
- Roger G Miller
- Ryan Dehoff
- Sai Krishna Reddy Adapa
- Sandra Davern
- Sarah Graham
- Sudarsanam Babu
- Tomas Grejtak
- William Peter
- Yiyu Wang
- Yukinori Yamamoto
- Zhili Feng

Ruthenium is recovered from used nuclear fuel in an oxidizing environment by depositing the volatile RuO4 species onto a polymeric substrate.

CO2 capture by mineral looping, either using calcium or magnesium precursors requires that the materials be calcined after CO2 is captured from the atmosphere. This separates the CO2 for later sequestration and returned the starting material to its original state.

A new nanostructured bainitic steel with accelerated kinetics for bainite formation at 200 C was designed using a coupled CALPHAD, machine learning, and data mining approach.

Mineral looping is a promising method for direct air capture of CO2. However, reduction of sorbent reactivity after each loop is likely to be significant problems for mineral looping by MgO.

Spherical powders applied to nuclear targetry for isotope production will allow for enhanced heat transfer properties, tailored thermal conductivity and minimize time required for target fabrication and post processing.

The technologies provide a coating method to produce corrosion resistant and electrically conductive coating layer on metallic bipolar plates for hydrogen fuel cell and hydrogen electrolyzer applications.

Welding high temperature and/or high strength materials for aerospace or automobile manufacturing is challenging.

Biocompatible nanoparticles have been developed that can trap and retain therapeutic radionuclides and their byproducts at the cancer site. This is important to maximize the therapeutic effect of this treatment and minimize associated side effects.