Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate
(17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities
(27)
Researcher
- Lawrence {Larry} M Anovitz
- Aaron Werth
- Ali Passian
- Andrew G Stack
- Christopher Rouleau
- Costas Tsouris
- Emilio Piesciorovsky
- Gary Hahn
- Gs Jung
- Gyoung Gug Jang
- Harper Jordan
- Ilia N Ivanov
- Ivan Vlassiouk
- Jason Jarnagin
- Joel Asiamah
- Joel Dawson
- Jong K Keum
- Juliane Weber
- Mark Provo II
- Mina Yoon
- Nance Ericson
- Peng Yang
- Radu Custelcean
- Raymond Borges Hink
- Rob Root
- Sai Krishna Reddy Adapa
- Srikanth Yoginath
- Varisara Tansakul
- Yarom Polsky

CO2 capture by mineral looping, either using calcium or magnesium precursors requires that the materials be calcined after CO2 is captured from the atmosphere. This separates the CO2 for later sequestration and returned the starting material to its original state.

The ever-changing cellular communication landscape makes it difficult to identify, map, and localize commercial and private cellular base stations (PCBS).

Mineral looping is a promising method for direct air capture of CO2. However, reduction of sorbent reactivity after each loop is likely to be significant problems for mineral looping by MgO.

This technology is a laser-based heating unit that offers rapid heating profiles on a research scale with minimal incidental heating of materials processing environments.

Electrical utility substations are wired with intelligent electronic devices (IEDs), such as protective relays, power meters, and communication switches.

A novel molecular sorbent system for low energy CO2 regeneration is developed by employing CO2-responsive molecules and salt in aqueous media where a precipitating CO2--salt fractal network is formed, resulting in solid-phase formation and sedimentation.

An efficient, eco-friendly metal extraction using ultrasonic leaching, ideal for lithium and magnesium recovery from minerals and waste.
Aromas play a significant role in the quality and safety of food, beverages, and even manufactured products. The ability to detect and interpret these aromas accurately can enhance product safety and consumer satisfaction.