Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities (27)
Researcher
- Lawrence {Larry} M Anovitz
- Alexander I Wiechert
- Andrew G Stack
- Bruce Hannan
- Costas Tsouris
- Debangshu Mukherjee
- Gs Jung
- Gyoung Gug Jang
- Juliane Weber
- Loren L Funk
- Md Inzamam Ul Haque
- Olga S Ovchinnikova
- Peng Yang
- Polad Shikhaliev
- Radu Custelcean
- Sai Krishna Reddy Adapa
- Theodore Visscher
- Vladislav N Sedov
- Yacouba Diawara

CO2 capture by mineral looping, either using calcium or magnesium precursors requires that the materials be calcined after CO2 is captured from the atmosphere. This separates the CO2 for later sequestration and returned the starting material to its original state.

Among the methods for point source carbon capture, the absorption of CO2 using aqueous amines (namely MEA) from the post-combustion gas stream is currently considered the most promising.

ORNL has developed a large area thermal neutron detector based on 6LiF/ZnS(Ag) scintillator coupled with wavelength shifting fibers. The detector uses resistive charge divider-based position encoding.

Mineral looping is a promising method for direct air capture of CO2. However, reduction of sorbent reactivity after each loop is likely to be significant problems for mineral looping by MgO.

An efficient, eco-friendly metal extraction using ultrasonic leaching, ideal for lithium and magnesium recovery from minerals and waste.

This innovative approach combines optical and spectral imaging data via machine learning to accurately predict cancer labels directly from tissue images.