Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate
(29)
- Computing and Computational Sciences Directorate (39)
- Energy Science and Technology Directorate
(229)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (138)
- User Facilities (28)
Researcher
- Ali Passian
- Joseph Chapman
- Nicholas Peters
- Alexey Serov
- Hsuan-Hao Lu
- Jaswinder Sharma
- Joseph Lukens
- Muneer Alshowkan
- Xiang Lyu
- Amit K Naskar
- Anees Alnajjar
- Beth L Armstrong
- Brian Williams
- Claire Marvinney
- Gabriel Veith
- Georgios Polyzos
- Gerald Tuskan
- Harper Jordan
- Holly Humphrey
- Ilenne Del Valle Kessra
- Isaiah Dishner
- James Szybist
- Jeff Foster
- Joel Asiamah
- Joel Dawson
- John F Cahill
- Jonathan Willocks
- Josh Michener
- Junbin Choi
- Khryslyn G Araño
- Liangyu Qian
- Logan Kearney
- Mariam Kiran
- Marm Dixit
- Meghan Lamm
- Michael Toomey
- Michelle Lehmann
- Nance Ericson
- Nihal Kanbargi
- Paul Abraham
- Ritu Sahore
- Srikanth Yoginath
- Todd Toops
- Varisara Tansakul
- Vilmos Kertesz
- Xiaohan Yang
- Yang Liu

Here we present a solution for practically demonstrating path-aware routing and visualizing a self-driving network.

Enzymes for synthesis of sequenced oligoamide triads and tetrads that can be polymerized into sequenced copolyamides.
Contact
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

Technologies directed to polarization agnostic continuous variable quantum key distribution are described.
Contact:
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

The development of quantum networking requires architectures capable of dynamically reconfigurable entanglement distribution to meet diverse user needs and ensure tolerance against transmission disruptions.

Polarization drift in quantum networks is a major issue. Fiber transforms a transmitted signal’s polarization differently depending on its environment.

This invention addresses a key challenge in quantum communication networks by developing a controlled-NOT (CNOT) gate that operates between two degrees of freedom (DoFs) within a single photon: polarization and frequency.

An electrochemical cell has been specifically designed to maximize CO2 release from the seawater while also not changing the pH of the seawater before returning to the sea.