Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (29)
- Computing and Computational Sciences Directorate (39)
- Energy Science and Technology Directorate (229)
- Fusion and Fission Energy and Science Directorate
(24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (138)
- User Facilities (28)
Researcher
- Ali Passian
- Joseph Chapman
- Nicholas Peters
- Venugopal K Varma
- Hsuan-Hao Lu
- Joseph Lukens
- Mahabir Bhandari
- Muneer Alshowkan
- Adam Aaron
- Anees Alnajjar
- Brian Williams
- Charles D Ottinger
- Claire Marvinney
- Govindarajan Muralidharan
- Harper Jordan
- Hongbin Sun
- Joel Asiamah
- Joel Dawson
- Mariam Kiran
- Nance Ericson
- Nate See
- Prashant Jain
- Rose Montgomery
- Sergey Smolentsev
- Srikanth Yoginath
- Steven J Zinkle
- Thien D. Nguyen
- Thomas R Muth
- Varisara Tansakul
- Yanli Wang
- Ying Yang
- Yutai Kato

In nuclear and industrial facilities, fine particles, including radioactive residues—can accumulate on the interior surfaces of ventilation ducts and equipment, posing serious safety and operational risks.

Here we present a solution for practically demonstrating path-aware routing and visualizing a self-driving network.

Technologies directed to polarization agnostic continuous variable quantum key distribution are described.
Contact:
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

The development of quantum networking requires architectures capable of dynamically reconfigurable entanglement distribution to meet diverse user needs and ensure tolerance against transmission disruptions.

Polarization drift in quantum networks is a major issue. Fiber transforms a transmitted signal’s polarization differently depending on its environment.

V-Cr-Ti alloys have been proposed as candidate structural materials in fusion reactor blanket concepts with operation temperatures greater than that for reduced activation ferritic martensitic steels (RAFMs).

This invention addresses a key challenge in quantum communication networks by developing a controlled-NOT (CNOT) gate that operates between two degrees of freedom (DoFs) within a single photon: polarization and frequency.