Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities (27)
Researcher
- Ying Yang
- Venugopal K Varma
- Alice Perrin
- Mahabir Bhandari
- Steven J Zinkle
- Yanli Wang
- Yutai Kato
- Adam Aaron
- Alex Plotkowski
- Amit Shyam
- Bruce A Pint
- Bruce Moyer
- Charles D Ottinger
- Christopher Ledford
- Costas Tsouris
- Debjani Pal
- Gerry Knapp
- Govindarajan Muralidharan
- Gs Jung
- Gyoung Gug Jang
- James A Haynes
- Jeffrey Einkauf
- Jennifer M Pyles
- Jong K Keum
- Justin Griswold
- Kuntal De
- Laetitia H Delmau
- Luke Sadergaski
- Michael Kirka
- Mike Zach
- Mina Yoon
- Nicholas Richter
- Padhraic L Mulligan
- Patxi Fernandez-Zelaia
- Radu Custelcean
- Rose Montgomery
- Ryan Dehoff
- Sandra Davern
- Sergey Smolentsev
- Sumit Bahl
- Sunyong Kwon
- Thomas R Muth
- Tim Graening Seibert
- Weicheng Zhong
- Wei Tang
- Xiang Chen
- Yan-Ru Lin

Ruthenium is recovered from used nuclear fuel in an oxidizing environment by depositing the volatile RuO4 species onto a polymeric substrate.

The invented alloys are a new family of Al-Mg alloys. This new family of Al-based alloys demonstrate an excellent ductility (10 ± 2 % elongation) despite the high content of impurities commonly observed in recycled aluminum.

V-Cr-Ti alloys have been proposed as candidate structural materials in fusion reactor blanket concepts with operation temperatures greater than that for reduced activation ferritic martensitic steels (RAFMs).

Fusion reactors need efficient systems to create tritium fuel and handle intense heat and radiation. Traditional liquid metal systems face challenges like high pressure losses and material breakdown in strong magnetic fields.

The traditional window installation process involves many steps. These are becoming even more complex with newer construction requirements such as installation of windows over exterior continuous insulation walls.

High strength, oxidation resistant refractory alloys are difficult to fabricate for commercial use in extreme environments.

The first wall and blanket of a fusion energy reactor must maintain structural integrity and performance over long operational periods under neutron irradiation and minimize long-lived radioactive waste.

Spherical powders applied to nuclear targetry for isotope production will allow for enhanced heat transfer properties, tailored thermal conductivity and minimize time required for target fabrication and post processing.

Biocompatible nanoparticles have been developed that can trap and retain therapeutic radionuclides and their byproducts at the cancer site. This is important to maximize the therapeutic effect of this treatment and minimize associated side effects.

A novel molecular sorbent system for low energy CO2 regeneration is developed by employing CO2-responsive molecules and salt in aqueous media where a precipitating CO2--salt fractal network is formed, resulting in solid-phase formation and sedimentation.