Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- National Security Sciences Directorate
(17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (128)
- User Facilities (27)
- (-) Isotope Science and Enrichment Directorate (6)
Researcher
- Venugopal K Varma
- Mahabir Bhandari
- Mike Zach
- Aaron Werth
- Adam Aaron
- Ali Passian
- Andrew F May
- Ben Garrison
- Brad Johnson
- Bruce Moyer
- Charles D Ottinger
- Charlie Cook
- Christopher Hershey
- Craig Blue
- Daniel Rasmussen
- Debjani Pal
- Emilio Piesciorovsky
- Gary Hahn
- Govindarajan Muralidharan
- Harper Jordan
- Hsin Wang
- James Klett
- Jeffrey Einkauf
- Jennifer M Pyles
- Joel Asiamah
- Joel Dawson
- John Lindahl
- Justin Griswold
- Kuntal De
- Laetitia H Delmau
- Luke Sadergaski
- Nance Ericson
- Nedim Cinbiz
- Padhraic L Mulligan
- Raymond Borges Hink
- Rose Montgomery
- Sandra Davern
- Sergey Smolentsev
- Srikanth Yoginath
- Steven J Zinkle
- Thomas R Muth
- Tony Beard
- Varisara Tansakul
- Yanli Wang
- Yarom Polsky
- Ying Yang
- Yutai Kato

Ruthenium is recovered from used nuclear fuel in an oxidizing environment by depositing the volatile RuO4 species onto a polymeric substrate.

V-Cr-Ti alloys have been proposed as candidate structural materials in fusion reactor blanket concepts with operation temperatures greater than that for reduced activation ferritic martensitic steels (RAFMs).

Fusion reactors need efficient systems to create tritium fuel and handle intense heat and radiation. Traditional liquid metal systems face challenges like high pressure losses and material breakdown in strong magnetic fields.

The technologies provide a system and method of needling of veiled AS4 fabric tape.

The traditional window installation process involves many steps. These are becoming even more complex with newer construction requirements such as installation of windows over exterior continuous insulation walls.

Spherical powders applied to nuclear targetry for isotope production will allow for enhanced heat transfer properties, tailored thermal conductivity and minimize time required for target fabrication and post processing.

ORNL will develop an advanced high-performing RTG using a novel radioisotope heat source.

Electrical utility substations are wired with intelligent electronic devices (IEDs), such as protective relays, power meters, and communication switches.

Biocompatible nanoparticles have been developed that can trap and retain therapeutic radionuclides and their byproducts at the cancer site. This is important to maximize the therapeutic effect of this treatment and minimize associated side effects.