Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities (27)
Researcher
- Amit K Naskar
- Sam Hollifield
- Venugopal K Varma
- Chad Steed
- Jaswinder Sharma
- Junghoon Chae
- Logan Kearney
- Mahabir Bhandari
- Michael Toomey
- Mingyan Li
- Nihal Kanbargi
- Travis Humble
- Aaron Werth
- Adam Aaron
- Ali Passian
- Arit Das
- Benjamin L Doughty
- Brian Weber
- Charles D Ottinger
- Christopher Bowland
- Edgar Lara-Curzio
- Emilio Piesciorovsky
- Felix L Paulauskas
- Frederic Vautard
- Gary Hahn
- Govindarajan Muralidharan
- Harper Jordan
- Holly Humphrey
- Isaac Sikkema
- Jason Jarnagin
- Joel Asiamah
- Joel Dawson
- Joseph Olatt
- Kevin Spakes
- Kunal Mondal
- Lilian V Swann
- Luke Koch
- Mahim Mathur
- Mark Provo II
- Mary A Adkisson
- Nance Ericson
- Oscar Martinez
- Raymond Borges Hink
- Robert E Norris Jr
- Rob Root
- Rose Montgomery
- Samudra Dasgupta
- Santanu Roy
- Sergey Smolentsev
- Srikanth Yoginath
- Steven J Zinkle
- Sumit Gupta
- Thomas R Muth
- T Oesch
- Uvinduni Premadasa
- Varisara Tansakul
- Vera Bocharova
- Yanli Wang
- Yarom Polsky
- Ying Yang
- Yutai Kato

Efficient thermal management in polymers is essential for developing lightweight, high-strength materials with multifunctional capabilities.

The disclosure is directed to optimized fiber geometries for use in carbon fiber reinforced polymers with increased compressive strength per unit cost. The disclosed fiber geometries reduce the material processing costs as well as increase the compressive strength.

The ever-changing cellular communication landscape makes it difficult to identify, map, and localize commercial and private cellular base stations (PCBS).

A novel and cost-effective process for the activation of carbon fibers was established.
Contact
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

V-Cr-Ti alloys have been proposed as candidate structural materials in fusion reactor blanket concepts with operation temperatures greater than that for reduced activation ferritic martensitic steels (RAFMs).

The QVis Quantum Device Circuit Optimization Module gives users the ability to map a circuit to a specific quantum devices based on the device specifications.

QVis is a visual analytics tool that helps uncover temporal and multivariate variations in noise properties of quantum devices.

ORNL contributes to developing the concept of passive CO2 DAC by designing and testing a hybrid sorption system. This design aims to leverage the advantages of CO2 solubility and selectivity offered by materials with selective sorption of adsorbents.

Fusion reactors need efficient systems to create tritium fuel and handle intense heat and radiation. Traditional liquid metal systems face challenges like high pressure losses and material breakdown in strong magnetic fields.

The traditional window installation process involves many steps. These are becoming even more complex with newer construction requirements such as installation of windows over exterior continuous insulation walls.