Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (128)
- User Facilities (27)
- (-) Fusion and Fission Energy and Science Directorate (21)
Researcher
- Tomonori Saito
- Sheng Dai
- Radu Custelcean
- Costas Tsouris
- Amit K Naskar
- Guang Yang
- Parans Paranthaman
- Syed Islam
- Zhenzhen Yang
- Anisur Rahman
- Beth L Armstrong
- Bishnu Prasad Thapaliya
- Edgar Lara-Curzio
- Gyoung Gug Jang
- Jeff Foster
- Logan Kearney
- Ramesh Bhave
- Benjamin Manard
- Craig A Bridges
- Diana E Hun
- Frederic Vautard
- Gabriel Veith
- Ilias Belharouak
- Ilja Popovs
- Jaswinder Sharma
- Jeffrey Einkauf
- Lawrence {Larry} M Anovitz
- Mary Danielson
- Michael Toomey
- Michelle Lehmann
- Shannon M Mahurin
- Venugopal K Varma
- Alexander I Wiechert
- Alexei P Sokolov
- Alexey Serov
- Benjamin L Doughty
- Bruce Moyer
- Catalin Gainaru
- Cyril Thompson
- Eric Wolfe
- Ethan Self
- Felix L Paulauskas
- Gs Jung
- Hongbin Sun
- Li-Qi Qiu
- Mahabir Bhandari
- Natasha Ghezawi
- Nihal Kanbargi
- Nikki Thiele
- Prashant Jain
- Robert Sacci
- Santa Jansone-Popova
- Saurabh Prakash Pethe
- Sergiy Kalnaus
- Shailesh Dangwal
- Tolga Aytug
- Uday Vaidya
- Vera Bocharova
- Xiang Lyu
- Zoriana Demchuk
- Achutha Tamraparni
- Adam Aaron
- Ahmed Hassen
- Amanda Musgrove
- Andrew F May
- Andrew G Stack
- Anees Alnajjar
- Anna M Mills
- Arit Das
- Ben Garrison
- Ben Lamm
- Brad Johnson
- Brandon A Wilson
- Callie Goetz
- Chanho Kim
- Charles D Ottinger
- Charles F Weber
- Christopher Bowland
- Christopher Hobbs
- Christopher Janke
- Corson Cramer
- Diana Stamberga
- Eddie Lopez Honorato
- Felipe Polo Garzon
- Fred List III
- Georgios Polyzos
- Govindarajan Muralidharan
- Holly Humphrey
- Hsin Wang
- Ian Greenquist
- Isaac Sikkema
- Isaiah Dishner
- Jayanthi Kumar
- Jennifer M Pyles
- Jiho Seo
- Joanna Mcfarlane
- Jonathan Willocks
- Jong K Keum
- Joseph Olatt
- Josh Michener
- Juliane Weber
- Jun Yang
- Junyan Zhang
- Karen Cortes Guzman
- Kaustubh Mungale
- Keith Carver
- Khryslyn G Araño
- Kuma Sumathipala
- Kunal Mondal
- Laetitia H Delmau
- Liangyu Qian
- Luke Sadergaski
- Mahim Mathur
- Matthew S Chambers
- Matt Kurley III
- Matt Vick
- Md Faizul Islam
- Meghan Lamm
- Mengjia Tang
- Mike Zach
- Mina Yoon
- Mingyan Li
- Nageswara Rao
- Nancy Dudney
- Nate See
- N Dianne Ezell
- Nedim Cinbiz
- Nick Galan
- Nick Gregorich
- Nidia Gallego
- Nithin Panicker
- Oscar Martinez
- Peng Yang
- Phillip Halstenberg
- Pradeep Ramuhalli
- Praveen Cheekatamarla
- Richard Howard
- Robert E Norris Jr
- Rodney D Hunt
- Rose Montgomery
- Ruhul Amin
- Ryan Heldt
- Sai Krishna Reddy Adapa
- Sam Hollifield
- Santanu Roy
- Sargun Singh Rohewal
- Sergey Smolentsev
- Shajjad Chowdhury
- Shiwanka Vidarshi Wanasinghe Wanasinghe Mudiyanselage
- Som Shrestha
- Steven J Zinkle
- Subhamay Pramanik
- Sumit Gupta
- Tao Hong
- Tao Wang
- Thomas Butcher
- Thomas R Muth
- Tyler Gerczak
- Ugur Mertyurek
- Uvinduni Premadasa
- Vandana Rallabandi
- Vishaldeep Sharma
- Vittorio Badalassi
- Vlastimil Kunc
- Yanli Wang
- Ying Yang
- Yingzhong Ma
- Yutai Kato
Next generation batteries for electric vehicles (EVs) and other manufacturing needs require solid-state batteries made with high-performance solid electrolytes. These thin films are critical components but are difficult to manufacture to meet performance standards.

Fusion reactors need efficient systems to create tritium fuel and handle intense heat and radiation. Traditional liquid metal systems face challenges like high pressure losses and material breakdown in strong magnetic fields.

Inorganic fillers play an important role in improving the ionic conductivity, electrochemical stability, and mechanical strength of solid composite electrolytes (SCEs) for next generation Li-ion batteries.
Regeneration of solvents used for carbon dioxide capture requires high temperature and high energy, which is a roadblock to commercialization and large-scale deployment of absorptive carbon capture plants.

A bonded carbon fiber monolith was made using a coal-based pitch precursor without a binder.

Electrolysis is common in the production of clean hydrogen used to produce other chemicals such as ammonia, based on heavy use of precious metals, not mined domestically. Typical electrolyzer components prone to degradation and are not suited for long-term durability.

The disclosed technology provides a new pathway for roll-to-roll processing of hierarchically porous acrylic fibers through spinodal decomposition.

This technology overcomes the limitations of carbon materials like Carbon Nanotubes (CNT) and graphene in carbon dioxide reduction. These materials show significant inactivity in electrochemical carbon dioxide (Na-CO2)reduction applications.

Currently there is no capability to test materials, sensors, and nuclear fuels at extremely high temperatures and under radiation conditions for nuclear thermal rocket propulsion or advanced reactors.

To develop efficient and stable liquid sorbents towards carbon capture, a series of functionalized ionic liquids were synthesized and studied in CO2 chemisorption via O–C bond formation.