Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities (27)
- (-) Fusion and Fission Energy and Science Directorate (21)
Researcher
- Joseph Chapman
- Nicholas Peters
- Venugopal K Varma
- Ying Yang
- Adam Willoughby
- Bruce A Pint
- Edgar Lara-Curzio
- Hongbin Sun
- Hsuan-Hao Lu
- Joseph Lukens
- Mahabir Bhandari
- Muneer Alshowkan
- Prashant Jain
- Rishi Pillai
- Steven J Zinkle
- Yanli Wang
- Yutai Kato
- Adam Aaron
- Alexander I Wiechert
- Alice Perrin
- Andrew F May
- Anees Alnajjar
- Ben Garrison
- Benjamin Manard
- Ben Lamm
- Beth L Armstrong
- Bishnu Prasad Thapaliya
- Brad Johnson
- Brandon A Wilson
- Brandon Johnston
- Brian Williams
- Callie Goetz
- Charles D Ottinger
- Charles F Weber
- Charles Hawkins
- Christopher Hobbs
- Christopher Ledford
- Costas Tsouris
- Eddie Lopez Honorato
- Eric Wolfe
- Frederic Vautard
- Fred List III
- Govindarajan Muralidharan
- Hsin Wang
- Ian Greenquist
- Ilias Belharouak
- Isaac Sikkema
- Jiheon Jun
- Joanna Mcfarlane
- Jonathan Willocks
- Joseph Olatt
- Keith Carver
- Kunal Mondal
- Mahim Mathur
- Mariam Kiran
- Marie Romedenne
- Matt Kurley III
- Matt Vick
- Meghan Lamm
- Michael Kirka
- Mike Zach
- Mingyan Li
- Nate See
- N Dianne Ezell
- Nedim Cinbiz
- Nidia Gallego
- Nithin Panicker
- Oscar Martinez
- Patxi Fernandez-Zelaia
- Pradeep Ramuhalli
- Praveen Cheekatamarla
- Priyanshi Agrawal
- Richard Howard
- Rodney D Hunt
- Rose Montgomery
- Ruhul Amin
- Ryan Dehoff
- Ryan Heldt
- Sam Hollifield
- Sergey Smolentsev
- Shajjad Chowdhury
- Thomas Butcher
- Thomas R Muth
- Tim Graening Seibert
- Tolga Aytug
- Tyler Gerczak
- Ugur Mertyurek
- Vandana Rallabandi
- Vishaldeep Sharma
- Vittorio Badalassi
- Weicheng Zhong
- Wei Tang
- Xiang Chen
- Yan-Ru Lin
- Yong Chae Lim
- Zhili Feng

Here we present a solution for practically demonstrating path-aware routing and visualizing a self-driving network.

High-gradient magnetic filtration (HGMF) is a non-destructive separation technique that captures magnetic constituents from a matrix containing other non-magnetic species. One characteristic that actinide metals share across much of the group is that they are magnetic.

Technologies directed to polarization agnostic continuous variable quantum key distribution are described.
Contact:
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

The development of quantum networking requires architectures capable of dynamically reconfigurable entanglement distribution to meet diverse user needs and ensure tolerance against transmission disruptions.

The invention presented here addresses key challenges associated with counterfeit refrigerants by ensuring safety, maintaining system performance, supporting environmental compliance, and mitigating health and legal risks.

A pressure burst feature has been designed and demonstrated for relieving potentially hazardous excess pressure within irradiation capsules used in the ORNL High Flux Isotope Reactor (HFIR).

Polarization drift in quantum networks is a major issue. Fiber transforms a transmitted signal’s polarization differently depending on its environment.

V-Cr-Ti alloys have been proposed as candidate structural materials in fusion reactor blanket concepts with operation temperatures greater than that for reduced activation ferritic martensitic steels (RAFMs).

A novel method that prevents detachment of an optical fiber from a metal/alloy tube and allows strain measurement up to higher temperatures, about 800 C has been developed. Standard commercial adhesives typically only survive up to about 400 C.

This invention addresses a key challenge in quantum communication networks by developing a controlled-NOT (CNOT) gate that operates between two degrees of freedom (DoFs) within a single photon: polarization and frequency.