Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (128)
- User Facilities (27)
Researcher
- Brian Post
- Peter Wang
- Andrzej Nycz
- Chris Masuo
- Blane Fillingim
- Sam Hollifield
- Sudarsanam Babu
- Thomas Feldhausen
- Ahmed Hassen
- Chad Steed
- J.R. R Matheson
- Joshua Vaughan
- Junghoon Chae
- Lauren Heinrich
- Luke Meyer
- Mingyan Li
- Peeyush Nandwana
- Travis Humble
- William Carter
- Yousub Lee
- Aaron Werth
- Adam Stevens
- Alex Roschli
- Alex Walters
- Ali Passian
- Amit Shyam
- Brian Gibson
- Brian Weber
- Bruce Hannan
- Cameron Adkins
- Christopher Fancher
- Chris Tyler
- Craig Blue
- David Olvera Trejo
- Emilio Piesciorovsky
- Gary Hahn
- Gordon Robertson
- Harper Jordan
- Isaac Sikkema
- Isha Bhandari
- Jason Jarnagin
- Jay Reynolds
- Jeff Brookins
- Jesse Heineman
- Joel Asiamah
- Joel Dawson
- John Lindahl
- John Potter
- Joseph Olatt
- Kevin Spakes
- Kunal Mondal
- Liam White
- Lilian V Swann
- Loren L Funk
- Luke Koch
- Mahim Mathur
- Mark Provo II
- Mary A Adkisson
- Michael Borish
- Nance Ericson
- Oscar Martinez
- Polad Shikhaliev
- Rangasayee Kannan
- Raymond Borges Hink
- Ritin Mathews
- Rob Root
- Roger G Miller
- Ryan Dehoff
- Samudra Dasgupta
- Sarah Graham
- Scott Smith
- Srikanth Yoginath
- Steven Guzorek
- Theodore Visscher
- T Oesch
- Varisara Tansakul
- Vladislav N Sedov
- Vlastimil Kunc
- William Peter
- Yacouba Diawara
- Yarom Polsky
- Yukinori Yamamoto

The ever-changing cellular communication landscape makes it difficult to identify, map, and localize commercial and private cellular base stations (PCBS).

This manufacturing method uses multifunctional materials distributed volumetrically to generate a stiffness-based architecture, where continuous surfaces can be created from flat, rapidly produced geometries.

The lack of real-time insights into how materials evolve during laser powder bed fusion has limited the adoption by inhibiting part qualification. The developed approach provides key data needed to fabricate born qualified parts.

ORNL has developed a large area thermal neutron detector based on 6LiF/ZnS(Ag) scintillator coupled with wavelength shifting fibers. The detector uses resistive charge divider-based position encoding.

The QVis Quantum Device Circuit Optimization Module gives users the ability to map a circuit to a specific quantum devices based on the device specifications.

QVis is a visual analytics tool that helps uncover temporal and multivariate variations in noise properties of quantum devices.

A valve solution that prevents cross contamination while allowing for blocking multiple channels at once using only one actuator.

Materials produced via additive manufacturing, or 3D printing, can experience significant residual stress, distortion and cracking, negatively impacting the manufacturing process.

This work seeks to alter the interface condition through thermal history modification, deposition energy density, and interface surface preparation to prevent interface cracking.

Additive manufacturing (AM) enables the incremental buildup of monolithic components with a variety of materials, and material deposition locations.