Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Physical Sciences Directorate (128)
- User Facilities (27)
- (-) Neutron Sciences Directorate (11)
Researcher
- Brian Post
- Andrzej Nycz
- Chris Masuo
- Peter Wang
- Alex Walters
- Blane Fillingim
- Joshua Vaughan
- Luke Meyer
- Sudarsanam Babu
- Thomas Feldhausen
- William Carter
- Ahmed Hassen
- Brian Gibson
- Chris Tyler
- J.R. R Matheson
- Lauren Heinrich
- Peeyush Nandwana
- Udaya C Kalluri
- Yousub Lee
- Adam Stevens
- Akash Jag Prasad
- Alexander I Kolesnikov
- Alexei P Sokolov
- Alex Roschli
- Amit Shyam
- Bekki Mills
- Bruce Hannan
- Calen Kimmell
- Cameron Adkins
- Chelo Chavez
- Christopher Fancher
- Clay Leach
- Craig Blue
- Dave Willis
- David Olvera Trejo
- Gordon Robertson
- Isha Bhandari
- Jaydeep Karandikar
- Jay Reynolds
- Jeff Brookins
- Jesse Heineman
- John Lindahl
- John Potter
- John Wenzel
- Keju An
- Liam White
- Loren L Funk
- Luke Chapman
- Mark Loguillo
- Matthew B Stone
- Michael Borish
- Polad Shikhaliev
- Rangasayee Kannan
- Riley Wallace
- Ritin Mathews
- Roger G Miller
- Ryan Dehoff
- Sarah Graham
- Scott Smith
- Shannon M Mahurin
- Steven Guzorek
- Sydney Murray III
- Tao Hong
- Theodore Visscher
- Tomonori Saito
- Vasilis Tzoganis
- Vasiliy Morozov
- Victor Fanelli
- Vincent Paquit
- Vladimir Orlyanchik
- Vladislav N Sedov
- Vlastimil Kunc
- William Peter
- Xiaohan Yang
- Yacouba Diawara
- Yukinori Yamamoto
- Yun Liu

We presented a novel apparatus and method for laser beam position detection and pointing stabilization using analog position-sensitive diodes (PSDs).

System and method for part porosity monitoring of additively manufactured components using machining
In additive manufacturing, choice of process parameters for a given material and geometry can result in porosities in the build volume, which can result in scrap.

This manufacturing method uses multifunctional materials distributed volumetrically to generate a stiffness-based architecture, where continuous surfaces can be created from flat, rapidly produced geometries.

The lack of real-time insights into how materials evolve during laser powder bed fusion has limited the adoption by inhibiting part qualification. The developed approach provides key data needed to fabricate born qualified parts.

ORNL has developed a large area thermal neutron detector based on 6LiF/ZnS(Ag) scintillator coupled with wavelength shifting fibers. The detector uses resistive charge divider-based position encoding.

Neutron scattering experiments cover a large temperature range in which experimenters want to test their samples.

We present the design, assembly and demonstration of functionality for a new custom integrated robotics-based automated soil sampling technology as part of a larger vision for future edge computing- and AI- enabled bioenergy field monitoring and management technologies called

Creating a framework (method) for bots (agents) to autonomously, in real time, dynamically divide and execute a complex manufacturing (or any suitable) task in a collaborative, parallel-sequential way without required human interaction.

A valve solution that prevents cross contamination while allowing for blocking multiple channels at once using only one actuator.

Materials produced via additive manufacturing, or 3D printing, can experience significant residual stress, distortion and cracking, negatively impacting the manufacturing process.