Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities (27)
Researcher
- Brian Post
- Peter Wang
- Andrzej Nycz
- Blane Fillingim
- Chris Masuo
- Joseph Chapman
- Nicholas Peters
- Sudarsanam Babu
- Thomas Feldhausen
- Ahmed Hassen
- Edgar Lara-Curzio
- Hsuan-Hao Lu
- J.R. R Matheson
- Joseph Lukens
- Joshua Vaughan
- Lauren Heinrich
- Muneer Alshowkan
- Peeyush Nandwana
- Steven J Zinkle
- Yanli Wang
- Ying Yang
- Yousub Lee
- Yutai Kato
- Adam Stevens
- Adam Willoughby
- Alex Roschli
- Amit Shyam
- Anees Alnajjar
- Bishnu Prasad Thapaliya
- Brandon Johnston
- Brian Gibson
- Brian Williams
- Bruce A Pint
- Cameron Adkins
- Charles Hawkins
- Christopher Fancher
- Chris Tyler
- Craig Blue
- David Olvera Trejo
- Eric Wolfe
- Frederic Vautard
- Gordon Robertson
- Isha Bhandari
- Jay Reynolds
- Jeff Brookins
- Jesse Heineman
- John Lindahl
- John Potter
- Liam White
- Luke Meyer
- Mariam Kiran
- Marie Romedenne
- Michael Borish
- Nidia Gallego
- Rangasayee Kannan
- Rishi Pillai
- Ritin Mathews
- Roger G Miller
- Ryan Dehoff
- Sarah Graham
- Scott Smith
- Steven Guzorek
- Tim Graening Seibert
- Vlastimil Kunc
- Weicheng Zhong
- Wei Tang
- William Carter
- William Peter
- Xiang Chen
- Yukinori Yamamoto

Here we present a solution for practically demonstrating path-aware routing and visualizing a self-driving network.

Technologies directed to polarization agnostic continuous variable quantum key distribution are described.
Contact:
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

The development of quantum networking requires architectures capable of dynamically reconfigurable entanglement distribution to meet diverse user needs and ensure tolerance against transmission disruptions.

This manufacturing method uses multifunctional materials distributed volumetrically to generate a stiffness-based architecture, where continuous surfaces can be created from flat, rapidly produced geometries.

Polarization drift in quantum networks is a major issue. Fiber transforms a transmitted signal’s polarization differently depending on its environment.

V-Cr-Ti alloys have been proposed as candidate structural materials in fusion reactor blanket concepts with operation temperatures greater than that for reduced activation ferritic martensitic steels (RAFMs).

The lack of real-time insights into how materials evolve during laser powder bed fusion has limited the adoption by inhibiting part qualification. The developed approach provides key data needed to fabricate born qualified parts.

This invention addresses a key challenge in quantum communication networks by developing a controlled-NOT (CNOT) gate that operates between two degrees of freedom (DoFs) within a single photon: polarization and frequency.

With the ever-growing reliance on batteries, the need for the chemicals and materials to produce these batteries is also growing accordingly. One area of critical concern is the need for high quality graphite to ensure adequate energy storage capacity and battery stability.

Test facilities to evaluate materials compatibility in hydrogen are abundant for high pressure and low temperature (<100C).